Representation of spatial objects

How is raster data stored?

Individual information levels in the raster = **layers** = **layers** – here are **cells**

Individual information levels in the vector = **layers** = at ESRI called, for example, coverages, here they are:

Point = 1 pixel Line = sequence of adjacent pixels Area = contiguous group of adjacent pixels

Ways of structuring data in raster representation :

that is, how data is stored for a raster GIS

- 1. Direct cell dating
- = by cells cell def . help
 - Coordinates X, Y
 - or *i,j* (column and row position) attribute column given for the layer/class v1, v2, ... for the thus determined pixel

Ways of structuring data in a raster representation - continued :

2. Direct dating of the information layer = by layers

Ways of structuring data in a raster representation - continued:

3. direct dating of the object = by objects

Raster data compression

uncompressed data volumes are large

A. RLE – run - length encoding :

Data, i.e. values in cells 1 1 1 1 3 3 2 2 2 2 2 3 3 3 3

Data after RLE compression : $(1 \ 4)(3 \ 2)(2 \ 6)(3 \ 4)$

(the value in pixels and the number of repetitions are given, i.e. we have 2 of the first 4 values)

7

A. RLE - different options for determining the order of values for compression:

A1. Following the lines for RLE – row-ordering – (each row starts on the left) does not respect close values of neighboring pixels

8

A2. Row-by-row progression for RLE – row prime/ horizontal ordering – respects close values of pixels close to the beginning and end of the line

A3. Morton's order for RLE – Morton / Quadrant ordering

Changes of direction diagonally - more appropriate respect of values close to each other in the immediate vicinity over **4 lines**

A4. Peano order for RLE – Peano / Hilbert ordering

changes of direction in the perpendicular direction – more appropriate respect for loved ones values in the immediate vicinity

Representation of spatial objects 1. Raster representation - compression **B. String Codes (chain codes)**

define boundaries by encoding directions along object boundaries -

It is intended for starting cells (row *i* , column *j*) and then the direction for one pixel is always determined

Kódy am žuůu	1/ 0	
Kody smeru:	V= 0	
	S = 1	
	Z = 2	
	J = 3	
0, 0, 3, 0, 3,	2, 2, 3, 2, 1, 1, 1	1
0 x 2, 3, 0, 3,	2 x 2, 3, 2, 1, 1	х3

C. Block codes - square (block codes)

It is given

- 1. the position of the reference points at the bottom left and
- 2. size of square blocks

D. Coding of line sections (run length encodes)

indicates the start and end of a range of cells in rows

Řádek	c 3,4
Řádek	d 2,5
Řádek	e 1,6
Řádek	f 2,2 4,5
Řádek	g 5,5

E. Quadtree coding

Coding using repeated division into 4 quadrants by halving the sides

The goal is to get squares in which there is only a cell or more cells forming one object, i.e. the cells in it have the same value

> Figure shows the levels of partitioning by the quadtree method presented here

The octtree method for three-dimensional models composed of voxels

