České vysoké učení technické v Praze Fakulta stavební

Software pro zobrazování a export mapových dlaždic

DIPLOMOVÁ PRÁCE

Praha, 2013

Autor: Filip Zavadil

České vysoké učení technické v Praze Fakulta stavební

DIPLOMOVÁ PRÁCE

Software pro zobrazování a export mapových dlaždic

Software for displaying and exporting map tiles

Vedoucí práce: Ing. Jiří Cajthaml, Ph.D.

Praha, 2013

Autor: Filip Zavadil

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta stavební Thákurova 7, 166 29 Praha 6

ZADÁNÍ DIPLOMOVÉ PRÁCE

studijní program:	Geodézie a Kartografie
studijní obor:	Geoinformatika
akademický rok:	2012/2013
Jméno a příjmení diplomanta:	Filip Zavadil
Zadávající katedra:	Katedra mapování a kartografie
Vedoucí diplomové práce:	Ing. Jiří Cajthaml, Ph.D.
Název diplomové práce:	Software pro zobrazování a export mapových dlaždic
Název diplomové práce v anglickém jazyce	Software for displaying and exporting map tiles

 Rámcový obsah diplomové práce:
 Vytvořte software, který bude načítat rastrové mapové dlaždice

 do jednotlivých vrstev.
 Bude umožňovat přidání dalších grafických prvků.
 Aplikace bude schopna

 exportovat mapový dokument jako rastrový obrázek nebo jednotlivé mapové dlaždice.

Datum zadání diplomové práce: 28.2.2013 Termín odevzdání: 17.5.2013 (vyplňte poslední den výuky přísl. semestru)

Diplomovou práci lze zapsat, kromě oboru A, v letním i zimním semestru.

Pokud student neodevzdal diplomovou práci v určeném termínu, tuto skutečnost předem písemně zdůvodnil a omluva byla děkanem uznána, stanoví děkan studentovi náhradní termín odevzdání diplomové práce. Pokud se však student řádně neomluvil nebo omluva nebyla děkanem uznána, může si student zapsat diplomovou práci podruhé. Studentovi, který při opakovaném zápisu diplomovou práci neodevzdal v určeném termínu a tuto skutečnost řádně neomluvil nebo omluva nebyla děkanem uznána, se ukončuje studium podle § 56 zákona o VŠ č.111/1998 (SZŘ ČVUT čl 21, odst. 4).

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Call vedoucí diplomové práce

Zadání diplomové práce převzal dne:

vedoucí katedry

diplomant

Formulář nutno vyhotovit ve 3 výtiscích – 1x katedra, 1x diplomant, 1x studijní odd. (zašle katedra)

Nejpozději do konce 2. týdne výuky v semestru odešle katedra 1 kopii zadání DP na studijní oddělení a provede zápis údajů týkajících se DP do databáze KOS. DP zadává katedra nejpozději 1. týden semestru, v němž má student DP zapsanou.

(Směrnice děkana pro realizaci stud. programů a SZZ na FSv ČVUT čl. 5, odst. 7)

Prohlášení

Prohlašuji, že jsem svou diplomovou práci na téma "Software pro zobrazovaní a export mapových dlaždic" vypracoval samostatně a použil jsem pouze podklady uvedené v přiloženém seznamu.

V Praze dne

podpis

Abstrakt

Tato práce popisuje diplomový projekt "Software pro zobrazování a export mapových dlaždic". Jsou zde uvedeny teoretické základy služeb a technologií, které jsou v projektu využity. Tato práce také slouží jako uživatelský manuál pro stěžejní část celého diplomového projektu, tedy software umožňující načítat rastrové mapové dlaždice, rastrové i vektorové obrázky, kombinovat je mezi sebou a následně exportovat do dlaždicového formátu nebo jako rastrový obrázek.

Klíčová slova

mapa, mapové dlaždice, TMS, WMTS, SQLite, Qt/C++

Abstract

This thesis is describing diploma project "Software for displaying and exporting map tiles". There is a summary of teoretical basics of specifications, methods or services which are used in this project. The main part describes software MapVision. There are shown options and functions implemented in this application. There is also listed graphical user interface and future improvements.

Key Words

map, map tiles, TMS, WMTS, SQLite, Qt/C++

Obsah

1	Úvo	bd	1
2	Teo	prie použitých služeb a technologií	3
	2.1	OGC	3
	2.2	OSGeo	4
	2.3	TMS versus WMTS	6
	2.4	Referenční souřadnicový systém	7
	2.5	Souřadnicové systémy využívané v aplikaci	8
	2.6	Způsob číslování ukládání	12
	2.7	Georeferenční soubor WORLDFILE	12
	2.8	Mapové dlaždice	14
		2.8.1 Velikost dlaždice	14
		2.8.2 Formát mapové dlaždice	14
		2.8.3 Barevné hloubky dlaždic	15
3	Sez	námení s aplikací MapVision	17
	3.1	MapVision	17
	3.2	Hlavní okno	17
	3.3	Mapové okno	17
	3.4	Menu lišta	18
	3.5	Moduly	20
		3.5.1 Vrstvy	21
		3.5.2 Informace o souřadnicích	21
		3.5.3 Nalezení polohy	22
		3.5.4 Přidání textu	22
		3.5.5 Obrázkové prvky	23
		3.5.6 Grafické efekty	23
		3.5.7 Informace o mapovém okně	24
		3.5.8 Informace o výběru	24
		3.5.9 Protokol	25
	3.6	Vítací okno	25
	3.7	Sada nástrojů	25

	3.8	Vstupní vrstvy	27
	3.9	Export	29
	3.10	Klávesy a klávesové zkratky	29
	3.11	Budoucí vylepšení	30
	3.12	Mapový dokument MVD	31
	3.13	Licence	32
4	Výv	ojové prostředí	34
	4.1	Historie a vývoj Qt \ldots	34
	4.2	Licence	35
	4.3	Součásti Qt Framework	35
	4.4	Programy postavené na Qt	36
	4.5	Verzování	37
5	Výb	pěr ze zdrojového kódu	38
5	Vý b 5.1	pěr ze zdrojového kódu ZavaProj	38 40
5	Vý b 5.1 5.2	pěr ze zdrojového kódu ZavaProj	38 40 44
5	Vý b 5.1 5.2	pěr ze zdrojového kódu ZavaProj	38 40 44 44
5	Vý b 5.1 5.2	Děr ze zdrojového kódu ZavaProjZavaProjExport5.2.1Export výřezu mapy5.2.2Export mapových dlaždic	38 40 44 44 46
5	Vý b 5.1 5.2 5.3	Děr ze zdrojového kódu ZavaProj Export 5.2.1 Export výřezu mapy 5.2.2 Export mapových dlaždic Layer	38 40 44 44 46 48
5	Vý b 5.1 5.2 5.3 5.4	Děr ze zdrojového kóduZavaProjExport5.2.1Export výřezu mapy5.2.2Export mapových dlaždicLayerMapView	38 40 44 44 46 48 48
5	Výb 5.1 5.2 5.3 5.4 Záv	Děr ze zdrojového kódu ZavaProj Export Export 5.2.1 Export výřezu mapy 5.2.2 Export mapových dlaždic Layer MapView ěr	 38 40 44 44 46 48 48 50
5 6 Li	Výt 5.1 5.2 5.3 5.4 Záv terat	Děr ze zdrojového kódu ZavaProj Export Export 5.2.1 Export výřezu mapy 5.2.2 Export mapových dlaždic Layer MapView	 38 40 44 44 46 48 48 50 51

Seznam obrázků

1.1	Logo aplikace MapVision	2
2.1	Logo společnosti Open Geospatial Consortium	4
2.2	Logo společnosti Open Source Geospatial Foundation	5
2.3	Loga vybraných projektů pod organizací OSGeo	6
2.4	Tissotova indikatrix pro systém souřadnic UTM	9
2.5	Systém souřadnic, který využívá web mercator	9
2.6	Ukázka změny měřítka (hladiny zoom)	10
2.7	Struktura dlaždic mapové služby WMTS	11
2.8	Souřadnicová soustava v počítačové grafice	12
2.9	Struktura uložení mapových dlaždic	13
2.10	Schéma popisu souboru WORLDFILE, zdroj: wikipedia.org	14
3.1	Hlavní okno aplikace MapVision	18
3.2	Dialog pro definici území dle souřadnic	19
3.3	Dialog zobrazující informace o výběru	20
3.4	Okno aplikace "O aplikaci"	21
3.5	Vítací stránka zobrazuje tipy a odkazy pro nápovědu	26
3.6	Dialog nastavení parametrů vrstvy	27
3.7	Dialog pro uložení výřezu mapy	29
4.1	Logo frameworku Qt a mottem	34
4.2	Prostředí Qt Creator se spuštěným projektem Map Vision	36
4.3	Qt Designer: widgety pro grafické rozhraní	37

Seznam ukázek zdrojového kódu

2.1	Definice kartografického zobrazení v knihovně PROJ.4	8
2.2	Zápis web mercatoru ve formátu OGC WKT a v PRJ souboru	8
3.1	Ukázka MapVision Dokumentu	31
5.1	Měřítko mapy závislé na zeměpisné šířce	38
5.2	Funkce main()	38
5.3	Převod mezi systémy WGS84 a systémem dlaždic	40
5.4	Převod mezi systémy WGS84 a pixelovou soustavou	41
5.5	Funkce pro převod mezi soustavami s odlišným počátkem	41
5.6	Nalezení ohraničujícího obdélníku pro dlaždici	42
5.7	Převod souřadnic z decimálního formátu na hexagesimální $\ldots \ldots \ldots$	42
5.8	Výpočet sférické vzdálenosti mezi body	43
5.9	Převod mezi WGS84 a definovaným ref. souř. systémem	43
5.10	Převod souřadnic z web mercator do WGS84	44
5.11	Uložení výřezu mapy	45
5.12	Vytvoření souboru worldfile	45
5.13	Vyříznutí mapové dlaždice	46
5.14	Funkce uloží dlaždici o rozměrech 256 × 256 px	47
5.15	Implenetace změny zoom při dvojitém kliknutí	49

Kapitola 1 Úvod

V této kapitole je uveden stručný přehled celé práce. Je zde také popsán důvod vzniku aplikace a uvedeno srovnání s programy podobné funkcionality.

Jak název diplomové práce **Software pro zobrazování a export mapových dlaždic** napovídá, jedná se o mapovou prohlížečku, která je schopná provádět základní úkony jako je zobrazování, jednoduché úpravy a export rastrových mapových dat. Aplikace využívá *cachované* rastrové mapové dlaždice zejména služeb WMTS (Web Map Tile Service) a TMS (Tiled Map Service). O těchto službách bude pojednáno v kapitole 2.3.

Proč zrovna software pro prohlížení již renderovaných mapových dlaždic? Drtivá většina mapových produktů se dostává k zákazníkovi právě v rastrové formě. Je to způsob, který zajistí kompatibilitu se všemi platformami a systémy. Nedochází zde k žádným změnám či výkyvům a nepřesnostem při vykreslování dat. Rastrový či bitmapový obrázek je používán od počátku internetu a všechny prohlížeče či programy umí s těmito formáty zacházet. Nevýhoda je zřejmá. K uživateli se dostává již hotový produkt, který sice lze změnit, ale za cenu výpočetního výkonu při renderování na straně serveru. Mapová data, která jsou často zobrazována, je vhodné vykreslit dopředu a vytvořit tzv. "dlaždice do zásoby". Vytížení procesoru je minimální, jelikož nemusí docházet k renderování vektoru na rastrový obrázek. Pokud by ale bylo potřeba do takovéto mapy přidat grafický prvek nebo vrstvu, lze s výhodou použít aplikaci *MapVisi@n*.

Tato práce postupně popisuje vývoj celé aplikace. Jsou zde popsány poznatky, postupy a problémy, které při programování vyvstaly. Na začátku práce jsou uvedeny kapitoly pojednávající o mapových službách, jsou zde zmíněny výhody a nevýhody jednotlivých služeb a jejich struktura. Je zde také uvedeno jaký formát je vhodný pro ukládání dlaždic. V další části jsou popsány algoritmy či matematické funkce pro převod souřadnic (zejména zeměpisných) do ostatních pravoúhlých souřadnicových systémů. Kapitola 3 je věnována přímo aplikaci **MapVision**. Jsou zde popsány nejen jednotlivá tlačítka a funkce, ale i příklady a výstupy praktického využití aplikace. V tomto oddíle jsou také uvedeny zdroje, ze kterých je možné získat mapové dlaždice. Použitý programovací jazyk a vývojové prostředí jsou popsány v samostatné kapitole 4.

Pro práci s mapovými dlaždicemi existuje více aplikací. **MOBAC** (Mobile Atlas Creator) umožňuje načítat mapové služby TMS,WMTS a exportovat dlaždice v mnoha formátech, zejmána pro mobilní zařízení. **Map Tiler** je program pro rozřezání rastrové mapy do dlaždic. Dále existuje mnoho "prohlížeček", které podporují formát dlaždic. Mezi nejznámější patří mobilní aplikace **Locus**, **MGMaps a PhoneMaps**. Dlaždicové formáty podporují také GIS programy, ovšem v omezené míře (pouze prohlížení). Aplikace **MapVisi@n** se specializuje pouze na dlaždicový formát, proto nabízí další možnosti pro práci s mapovými dlaždicemi. Zobrazení více vrstev, určení jejich průhledností, přidání grafických prvků, možnost exportu do georeferencovaného obrázku, možnost jednoduchého georeferencování; to je výčet vlastností, které navíc nabízí aplikace **MapVisi@n** . Absence těchto možností byla také jedním z hlavních důvodů vzniku programu.

V této práci je použito více druhů a řezů písma. Zde je uvedena ukázka a popis pro lepší porozumění a chápání textu:

písmo	popis
MapVision	důležité pojmy
mapová služba	méně známé pojmy, které budou později vysvětleny
storno	funkce nebo tlačítka aplikace MapVision
WMTS, PNG	názvy technologií a formátů souborů
Qstring name	názvy proměnných uvedených v textu

Ukázky zdrojového kódu mají číslované řádky a zvýrazněnou skladbu kódu:

Obrázek 1.1: Logo aplikace MapVision

Kapitola 2

Teorie použitých služeb a technologií

Při vzniku internetu a hlavně při zvětšení toku dat se začaly mimo text stále více objevovaly obrázky. S tímto procesem se také na internetu začaly vystavovat i rastrové obrázky map. Nejdříve sice jako jeden obrázek (mapy malého měřítka) nebo jako výřezy. Postupem času přišel požadavek na zobrazení celé mapy. Vzhledem k tehdy běžné rychlosti připojení a nižší operační paměti nebylo vhodné (a dosud také není) zobrazit mapu jako jeden celek. V informatice od jejího počátku existoval postup jak takový obrázek poskládat. Ten se používal už v prvních počítačových hrách, kdy se vedle sebe skládaly *textury* pro vykreslení pozadí. Tohoto postupu, tedy skládání menších částí do většího celku, se s výhodou začalo využívat pro zobrazování map.

Metody, které tento úkon umožňují se nazývají **mapové služby** (Map Services). Postupem času se tyto služby rozrůstaly a vzniklo více implementací těchto služeb. Ve snaze tyto metody sjednotit vzniklo několik služeb (oficiálních či neoficiálních), které jsou si navzájem velmi podobné. Nejvíce podobné jsou produkty neboli implementace dvou organizací: **OGC** a **OSGeo**.

2.1 OGC

OGC – Open Geospatial Consortium¹ začalo působit v roce 1994. Je to neziskové sdružení cca 480 společností, vládních agentur a univerzit, které se snaží najít shodu a vytvořit standardy (OGC® Standards) a specifikace pro vývoj v oblasti geoinformačních technologií. Mezi oborově nejznámější patří např. specifikace:

Služby:

 WMTS – Web Map Tile Service je služba poskytující rastrové mapové dlaždice; aplikace MapVision podporuje tuto specifikaci; blíže viz 2.3 [OCG11];

¹http://www.opengeospatial.org/

- **WMS** Web Map Service poskytuje mapové obrázky dle požadavku klienta (referenční souřadnicový systém, území, velikost obrázku);
- **WFS** Web Feature Service je služba pro sdílení vektorových dat ve formátu GML dle požadavků klienta;
- WCS Web Coverage Service umožňuje přístup ke *coverage* datům na základě dotazů.

Formáty:

- **GML** Geography Markup Language je formát založený na XML; řadí se mezi vektorové formáty s geografickou informací bez vizualizační složky;
- **KML** Keyhole Markup Language je formát založený na XML; vektorový formát hojně využívaný při výměně a zobrazení dvou-dimenzionálních dat ve webovém prostředí (např. Google Earth); formát obsahuje vizualizační složku a lze ho bezztrátově převést do formátu KML.

Obrázek 2.1: Logo společnosti Open Geospatial Consortium

2.2 OSGeo

OSGeo – Open Source Geospatial Foundation² je nezisková nevládní organizace, která podporuje vznik a vývoj opensource geoinformačních technologií. Organizace byla založena v únoru 2006 a poskytuje finanční, organizační a právní podporu geoinformační komunitě. Pod záštitou OSGeo vzniklo mnoho svobodných a otevřených knihoven, aplikací a samotných dat. Organizace každý rok pořádá konferenci FOSS4G³, která je hlavním místem setkání členů a přispěvatelů. Mezi nejznámější a nejvíce využívané patří v současné době tyto projekty:

Knihovny:

• **PROJ.4** – knihovna umožňuje transformaci mezi kartografickými zobrazeními, tuto knihovnu využívá mnoho dalších opensource projektů;

²http://www.opengeospatial.org/ ³http://www.foss4g.org/

Obrázek 2.2: Logo společnosti Open Source Geospatial Foundation

- **PostGIS** rozšíření pro databázový systém PostgreSQL, umožnující uložení a dotazování prostorových dat;
- **GDAL/OGR** knihovna funkcí pro čtení a zápis rastrových (GDAL) a vektorových (OGR) datových formátů;
- **GeoTools** knihovna pro vytváření interaktivních geografických vizualizací v programovacím jazyce JAVA, knihovna je využívána GeoServerem;
- FDO C++ API pro definování a analýzu prostorových dat;
- **deegree** otevřený software pro prostorová data; zahrnuje přístup, vizualizaci; software je implementován v jazyce JAVA, jsou zde také implementovány služby WMS,WFS,

Webové aplikace:

- **TMS** Tile Map Service je služba poskytující rastrové mapové dlaždice; aplikace *MapVisi* podporuje tuto specifikaci; blíže viz část 2.3; [OSG12]
- **OpenLayers** otevřená knihovna psána v jazyce JavaScript pro zobrazování map na webovém prohlížeči; poskytuje API s podobnou funkcionalitou jako Google Maps nebo Bing Maps; knihovnu OpenLayers využívá pro svou mapu projekt OpenStreetMap (Slippy Map);
- **MapFish** framework pro vytváření "bohatých" webových mapových aplikací; zahrnuje knihovny OpenLayers, ExtJS a GeoExt; framework běží na straně klienta;
- MapServer CGI program běžící na straně serveru; vyvíjen Minnesotskou univerzitou;
- **GeoServer** mapserver, který pro sdílení geoprostorových dat, JAVA program poskytuje GUI prostředí.

Desktopové aplikace

• Quantum GIS – hojně využívaný opensource geografický informační systém; multiplatformní program je postaven na frameworku C++/Qt; • GRASS GIS – Geographic Resources Analysis Support System; GIS vyvíjen od roku 1982 pro vojenské účely; nyní je jako opensource dostupný pod licencí GNU GPL; program je také přístupný z QGISu.

Obrázek 2.3: Loga vybraných projektů pod organizací OSGeo

2.3 TMS versus WMTS

Jak již bylo uvedeno výše, specifikace služeb TMS, WMTS je velmi podobná. Je to dáno závislou historií:

- březen 2006: OSGeo vyvinulo a otestovalo TMS. V současné době zde existovaly implementace služeb jako je Google Maps, OnEarth, apod.
- 2007: Skupina zabývající se OGC WMS uvažovala o začlenění podpory pro hotové dlaždice do standardu WMS. Později se rozhodlo, že vznikne nový oddělený standard WMTS.
- září 2008: Na výroční konferenci FOSS4G v Jižní Africe proběhla velká diskuze ohledně služeb distribujících mapové dlaždice.
- 2008/2009: Byly testovány 4 nezávislé implementace WMTS.
- prosinec 2009: Implementace WMTS byla schválena jako OGC standard.
- duben, 2010: WMTS byla veřejně uvedena.

Během této doby (cca 4 roky než byl vydán standard WMTS) byla využívána specifikace TMS. Proto se lze běžně setkat s oběma typy implementací, které jsou velmi podobné:

- Obě služby využívají **stejný referenční souřadnicový systém**.
- Snižují zatížení serveru: řeší požadování pouze části mapy, omezují požadavky pouze na předdefinované dlaždice, povolují ukládání do mezipaměti prohlížeče.
- Obě totožně definují měřítkovou sadu, sadu dlaždic pro každé měřítko, způsob označení a uložení jednotlivé dlaždice, rastrový formát (PNG, JPEG, ...) dlaždice.

Zásadní rozdíl je ovšem v počátku souřadnicového systému. Jedná se o počátek větve osy y. Vzorec pro přepočet souřadnice osy y je uveden v části 5.5.

2.4 Referenční souřadnicový systém

Standardní kartografické zobrazení užívané ve službách TMS a WMTS. Toto kartografické zobrazení se často nazývá "web mercator", "sférický mercator" nebo "Google mercator". V této práci bude nadále používán výraz **web mercator**. Jedná se o kartografické zobrazení :

- konformní (úhlojevné spojité zobrazení zachovávající úhly);
- cylindrické (válcové osa válce totožná s osou zemskou);
- na náhradní kouli (pro zjednodušení je elipsoid nahrazen koulí).

Z vlastností plyne, že na mapách nejsou zobrazeny póly, které se ocitají v nekonečnu, a také že mapa bude vykazovat velké zkreslení právě v polárních oblastech. Aby si mapa zachovala čtvercový poměr stran (1 : 1), jsou oblasti zobrazeny do cca 85.05° zeměpisných šířek. Většina světově běžně používaných mapových portálů využívá stejné kartografické zobrazení, například OpenStreetMap (slippy map), Google Maps, Bing Maps, Nokia maps a další. Tyto služby jsou plně kompatibilní s aplikací **MapVisi**

Jelikož je tento ref. souř. systém používán pro zobrazení a ne pro přesné souřadnicové výpočty, je pro zjednodušení použita koule místo elipsoidu. Toto sférické kart. zobrazení způsobuje pouze 0.33% zkreslení na ose y. [Ait11]

Toto kart. zobrazení začal používat Google, proto je také často nazýváno "Google Projection". Poté tuto projekci převzal i projekt OpenStreetMap pro svou renderovanou mapu. Vývoj, použití a označení referenčního souřadnicového systému: [ope13]

- EPSG:54004 vzniklo pro potřeby Google Maps;
- **OSGEO:41001** takto bylo zobrazení organizací OSGeo pracovně označeno během vývoje specifikace TMS;
- EPSG:900913 pro potřeby definice zobrazení v OpenLayers; další označení SR-ORG:7483
- ESRI:102113 označení pro ESRI, poté bylo nahrazeno ESRI:102100;
- **EPSG:3785** ekvivalentní zobrazení jako předchozí, nyní kód EPSG; často mylně označováno jako EPSG:3587;

• **EPSG:3857** – shoda mezi EPSG a ESRI, poslední oficiální verze; další označení: SR-ORG:6864.

```
1 +proj=merc +lon 0=0 +k=1 +x 0=0 +y 0=0 +a=6378137 +b=6378137
2 +towgs84 =0 ,0 ,0 ,0 ,0 ,0 ,0 +units=m +no defs
```

Zdroj. kód 2.1: Definice kartografického zobrazení v knihovně PROJ.4

```
1 PROJCS ["WGS_84_/_Pseudo-Mercator"
2 GEOGCS["Popular_Visualisation_CRS"
<sup>3</sup> DATUM["Popular_Visualisation_Datum"
4 SPHEROID ["Popular_Visualisation_Sphere", 6378137, 0,
5 AUTHORITY["EPSG", "7059"]],
{}_{6} \text{ TOWGS84} \begin{bmatrix} 0 & , 0 & , 0 & , 0 & , 0 & , 0 \end{bmatrix} ,
7 AUTHORITY ["EPSG", "6055"]],
8 PRIMEM["Greenwich", 0,
9 AUTHORITY["EPSG","8901"]],
10 UNIT["degree", 0.01745329251994328,
11 AUTHORITY["EPSG", "9122"]],
12 AUTHORITY ["EPSG", "4055"]],
13 UNIT ["metre", 1
<sup>14</sup> AUTHORITY["EPSG", "9001"]],
<sup>15</sup> PROJECTION ["Mercator_1SP"]
<sup>16</sup> PARAMETER["central_meridian"
                                     ,0] ,
17 PARAMETER["scale_factor",1],
18 PARAMETER["false_easting",0],
19 PARAMETER["false_qnorthing",0],
20 AUTHORITY["EPSG", "3785"],
21 AXIS [ "X"
              ,EAST] ,
22 AXIS [ "Y"
             ,NORTH] ]
```

Zdroj. kód 2.2: Zápis web mercatoru ve formátu OGC WKT a v PRJ souboru

2.5 Souřadnicové systémy využívané v aplikaci

Aplikace MapVision využívá několik souřadnicových systémů:

- web mercator;
- schéma dlaždic;
- pixelová soustava.

Všechny souřadnicové systémy jsou již pravoúhlé a níže jsou blíže určeny.

Obrázek 2.4: Tissotova indikatrix pro systém souřadnic UTM

Web mercator

Souřadnicová soustava tohoto referenčního systému má počátek na rovníku a nultém poledníku, stejně jako WGS84. Kladné větve také míří na sever a na východ. Jednotky jsou metry a v oddíle 5.4 je uveden transformační vzorec na zeměpisné souřadnice WGS84.

Obrázek 2.5: Systém souřadnic, který využívá web mercator

Schéma dlaždic

Každá zoom hladina má vlastní souřadnicový systém a číslování rozdělené mapy začíná vždy od začátku. Tzn. že dlaždice pro [zoom = 2; x = 1; y = 1] bude zobrazovat odlišné území než dlaždice [zoom = 3; x = 1; y = 1]. U služby TMS se počátek soustavy souřadnic považuje dlaždice na jihozápadě "poskládané" mapy. U služby WMTS se počátek nachází v severozápadním rohu. To je hlavní rozdíl mezi těmito službami, který je potřeba brát v potaz při přidávání nové vrstvy. Aplikace **MapVision** umožňuje definovat, kde se tento počátek nachází. Názorná ukázka tohoto systému a způsob počítání je uveden na obrázku 2.7. Pokud jsou známy tyto souřadnice, lze se snadno dostat k dlaždici, kterou požadujeme. Číslo dlaždice lze zjistit dle jednoduchého vzorce 2.1. [Sch07a] [Při08]

$$X_{tile} \doteq X_{pixel}/256$$

$$Y_{tile} \doteq Y_{pixel}/256$$
(2.1)

Po inverzi vzorce 2.1 lze získat souřadnice v obrázkových bodech (pixelech) levého horního rohu dlaždice.

Obrázek 2.6: Ukázka změny měřítka (hladiny zoom)

Pixelová soustava

Běžně v informatice používaná soustava souřadnic jednotlivých obrázkových bodů. Počátek má v levém horním rohu obrázku. Kladná vodorovná větev osy x směřuje doprava a vertikální větev osy y míří dolů. Po představě celé složené mapy světa se počátek nachází vždy na severozápadním rohu. Velikost celé mapy roste společně s hladinou zoom (změnou měřítka). Pokud zoom = 0, mapa světa se vykreslí do jedné dlaždice o rozměrech 256×256 pixelů. Pokud se uvažuje zoom = 1, mapa světa se složí do obrázku, který má velikost 512×512 pixelů. Z tohoto plyne, že se velikost mapy zdvojnásobí a počet dlaždic vzroste

Obrázek 2.7: Struktura dlaždic mapové služby WMTS

 $4\times$. Lze tedy říci, že pokud se určitý bod na mapě nachází na souřadnicích [350, 500]px, lze ho v následující hladině nalézt na souřadnicích [700, 1000]px. Na obr. 2.6 je načrtnut názorný příklad. Tabulka 2.1 uvádí velikost celé mapy světa v pixelech a počet dlaždic potřebných k zobrazení světa. [Sch07b]

zoom	velikost strany (px)	počet dlaždic
0	256	1
1	512	4
4	4 096	256
6	16 384	4 096
8	65 536	65 536
10	~ 262.12 tis.	\sim 1.048 mil.
12	~ 1.05 mil.	\sim 16.777 mil.
14	~ 4.19 mil.	~ 268.44 mil.
16	$\sim 16.78~{\rm mil}$	\sim 4.295 mld.
18	~ 67.11 mil.	~ 68.72 mld.
20	~ 268.44 mil.	~ 1 099 mld.

Tabulka 2.1: Přehled počtu mapových dlaždic pro vybraný zoom

Pomocí pixelové soustavy jsou získávány souřadnice pro ostatní souřadnicové systémy. Například při kliknutí myši do oblasti mapy jsou odeslány pixelové souřadnice místa, kde se nacházel kurzor myši. Z tohoto údaje a z čísla hladiny zoom lze dopočítat např. zeměpisnou šířku/délku (s využitím vzorce 2.2) nebo číslo dlaždice (vzorec 2.1), kde se daný bod nachází.

Jelikož se vždy při změně zoom hladiny zvětší velikost $2\times$, velmi rychle rostou nároky na datový prostor úložiště, je vhodné mít dlaždice s optimálním datovým objemem. Touto problematikou se zabývá část 2.8.3. Velikost celé mapy (délku strany čtverce v pixelech) lze vypočítat dle vzorce: $a = 2^{zoom}$.

$$X_{pixel} = \frac{(\varphi + 180)}{360} \cdot 256 \cdot 2^{zoom}$$

$$Y_{pixel} = 0.5 - \frac{\log \frac{(1+\sin \varphi)}{1-\sin \varphi}}{4\pi} \cdot 256 \cdot 2^{zoom}$$
(2.2)

Obrázek 2.8: Souřadnicová soustava v počítačové grafice

2.6 Způsob číslování ukládání

Schéma uložení dlaždice je u služeb TMS a WMTS shodné. Jedná se o adresářovou strukturu, která je názorně popsána na obrázku 2.9. Pokud se vytváří dlaždicová mapa, nejdříve se vytvoří adresáře, které jsou pojmenovány po hladinách zoom. Postupně jsou do těchto adresářů zařazeny další podadresáře, které nesou název dle osy x. Tyto obsahují dlaždice, které by po složení vytvořily sloupec o šířce 256 pixelů a výšce dle zobrazovaného území. V těchto složkách se již nacházejí jednotlivé obrázky, které jsou pojmenovány po ose y a příponou formátu obrázku (PNG, JPG, TIFF, ...). O vhodných formátech je pojednáno v části 2.8.2.

2.7 Georeferenční soubor worldfile

Aplikace **MapVision** umožňuje načítat rastrová data ve formě obrázků. Aby byla aplikace schopna umístit obrázek ve správném měřítku a ve správných souřadnicích, je využíván formát WORLDFILE. Jedná se o textový soubor, který obsahuje 6 řádků, které podávají informace o rozlišení, rotaci a počátečních souřadnicích obrázku. Soubory ob-

.../map_set /hladina_zoom/osa_ X/osa_Y.png

Obrázek 2.9: Struktura uložení mapových dlaždic

sahují koncovku dle typu obrázku. Např. formát JPEG bude mít georeferenční soubor s koncovkou JGW. Podobně: PNG \Rightarrow PGW, TIFF \Rightarrow TFW. [ESR09]

Tento formát vyvinula společnost ESRI, pro georeferencování rastrových dat. Je to alternativa k formátu GeoTIFF, který obsahuje data pro georeferencování a informaci o použitém kartografickém zobrazení přímo v sobě. Soubor WORLDFILE ovšem nepodává informaci o referenčním souřadnicovém systému. Tuto informaci je nutné v GIS aplikacích určit. Aplikace **MapVisi@n** v této chvíli načítá WORLDFILE pouze v systému web mercator a s nulovou rotací na osách x, y. Zde je uvedena ukázka a popis souboru WORLDFILE:

worldfile	popis	
78271.51695312499	A rozlišení na ose-x (jednotky/pixel)	
0	B rotace kolem osy-y	
-0	\mathbf{C} rotace kolem osy-x	
-78271.51695312499	D rozlišení na ose-y (jednotky/pixel)	
-1721973.372968750	E x-souřadnice středu horního pravého pixelu	
11271098.44124999	\mathbf{F}	y-souřadnice středu horního pravého pixelu

Souřadnice referenčního systému lze vypočítat dle vzorce 2.3, kde x, y jsou souřadnice pixelové a \bar{x}, \bar{y} souřadnice v referenčním systému, který WORLDFILE využívá.

$$\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix} = \begin{bmatrix} A & B & C \\ D & E & F \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
(2.3)

Obrázek 2.10: Schéma popisu souboru WORLDFILE, zdroj: wikipedia.org

2.8 Mapové dlaždice

Tato část se zabývá typem a formátem jednotlivých mapových dlaždic. Dlaždice (tile) je jeden dílek, ze kterého se skládá výsledná mapa. Mapové dlaždice jsou rastrové (bitmapové) obrázky, které se mohou renderovat (vykreslovat) z vektorových dat (podle stylového klíče) při požadavku uživatele, nebo mohou být již vytvořeny dopředu. Tomuto způsobu se říká **tile caching**. Výhoda cachování spočívá v rychlejší odezvě.

2.8.1 Velikost dlaždice

Mapové služby nejčastěji používají čtvercové obrázky o velikosti 256 × 256 pixelů. Lze se setkat také s formátem 64 × 64 pixelů, zejména pro mobilní zařízení s menším displejem. Aplikace MapVisi pracuje pouze s prvně uvedenou velikostí.

2.8.2 Formát mapové dlaždice

Jelikož objem dat vzrůstá $4 \times$ s každou hladinou zoom, je zapotřebí zvolit vhodný formát mapové dlaždice a zároveň přihlížet k vizuálnímu hledisku. Mapové dlaždice mohou být uloženy v běžně užívaných rastrových formátech, jako jsou:

- **PNG** (Portable Network Graphics, MIME typeimage/png) je nástupce *GIFu*. Používá bezztrátovou kompresi a jeho první verze vyšla v roce 1996 (Standard W3C). Jelikož podporuje transparentní pozadí, je hojně používaný v internetovém prostředí.
- JPEG (Joint Photographic Experts Group, MIME typeimage/jpeg)je ztrátový komprimační algoritmus a také formát souboru. Je vhodný k použití u obrázků, kde se nevyskytují ostré hrany (narozdíl od formátu PNG). Je klasickým výstupem digitálních fotoaparátů.

- **BMP** (Microsoft Windows Bitmap, MIME typeimage/bmp) jeho první verze byla představena v roce 1988. Obrázky jsou ukládány po jednotlivých pixelech, a proto je souborová velikost značně větší než u předchozích formátů.
- **TIFF** (Tag Image File Format, MIME typeimage/tiff) používá libovolnou dostupnou kompresi a je schopen ukládat vícestránkové dokumenty. Vznikl jako vstupní formát pro scannery a faxové přístroje. Jeho varianta GeoTIFF obsahuje informaci o prostoru a kartografickém zobrazení.
- **GIF** (Graphics Interchange Format, MIME typeimage/gif) využívá bezztrátovou kompresi *LZW84*. Kvůli tomuto komprimačnímu algoritmu, který byl patentově chráněn, je nahrazen formátem PNG. Je ovšem schopen animace, a proto byl dříve hojně využíván na internetu v reklamních bannerech.

Nejčastěji používaným formátem je PNG, který je vhodný pro většinu kreslených map. Díky své LZW bezztrátové kompresi je vhodný po stránce datového objemu i vizualizační. S výhodou lze také využít vlastnosti průhlednosti. Pokud se v mapě vyskytuje gradient nebo je typické časté střídání barev (satelitní snímky, ortofotosnímky nebo stínování terénu), hodí se spíše formát JPEG, který ušetří místo v úložišti. [Zav09]

2.8.3 Barevné hloubky dlaždic

Barevná hloubka popisuje počet použitých barev. Na tom také závisí počet bitů, potřebných k popisu barvy a tedy i datový objem. Nejmenší datovou velikost bude mít obrázek se dvěma barvami, který bude potřebovat pouze jeden bit (*Mono Color*). Naproti tomu obrázek, který by používal všechny barvy, které je lidské oko schopno rozeznat by k zápisu potřeboval 32 bitů (*Super True Color*). Příklady počtu bitů na pixel a počet možných barev je uveden v tabulce 2.2.

počet bitů	počet barev	označení
1	2	mono color
4	16	
8	256	
15	32 768	low color
16	65 536	high color
24	16 777 216	true color
32	4 294 mil.	super true color
48	281,5 bil.	deep color

Tabulka 2.2: Barevná hloubka obrázků počítačové grafiky

Běžné mapy jako výstup digitální kartografie ovšem využívají barev mnohem méně. Většinou postačí 8-bitů/pixel (256 barev). Ovšem exporty s touto barevnou hloubkou

nejsou v kartografických ani GIS editorech běžné. Často také postačí méně než 64 barev a tím dojde k významné redukci objemu dat, aniž by byla ovlivněna vizuální kvalita mapy při zobrazení na displeji. Je ovšem nutné použít správný algoritmus, který počet barev vhodně zredukuje. Lze využít např. program PNGQUANT⁴, který kvantuje obrázky pomocí **neuquant algoritmu** na 8-bitovou hloubku s možností vybrat 256 a méně barev. Tímto dojde k optimalizaci (při zachování průhlednosti) a výsledný obrázek je méně datově náročný. V tabulce 2.3 si lze všimnout změny datové velikosti při redukci barev, aniž by byla ovlivněna hodnota zobrazení. Aplikace **MapVisi@n** bude umožňovat tuto optimalizaci při exportu právě díky programu PNGquant.

Tabulka 2.3: Porovnání barevných hloubek obrázku 512 \times 512 px

⁴http://www.pngquant.org/

Kapitola 3

Seznámení s aplikací MapVision

3.1 MapVision

Aplikace **MapVision** byla navrhnuta pro práci s mapovými dlaždicemi. Postupně byly přidány další funkce ve formě modulů (část 3.5). Díky této skutečnosti je aplikace lehce rozšiřitelná o další prvky a funkce. V plánu je implementovat rozšíření aplikace pomocí metody PLUG-IN. **GUI** (grafické uživatelské rozhraní) bylo navrženo dle moderních aplikací, proto se vizuálně nepodobá běžným programům. Ikony jsou autorské a při jejich výrobě byl brán zřetel na to, aby uživatel intuitivně poznal k čemu jaká ikona slouží.

Aplikace byla pojmenována **MapVisi** [mapvižn]. Je to složeni dvou anglických slov map (mapa) a vision (vidění) – prohlížení map. Logo (obr. 1.1) je složeno z názvu aplikace, čtyř kosodélníků symbolizujících dlaždice a ikony modelu Země, který podává informaci, že se jedná o mapu.

3.2 Hlavní okno

Po spuštění se program otevře v maximálním zobrazení. Většina panelů je zapnuta a v mapovém okně se spustí "vítací stránka". Hlavní okno obsahuje většinu známých prvků, jako jsou *menu* a *lišta nástrojů* (část 3.7), následují dva postranní panely (část 3.5), mezi nimiž je hlavní část – **mapové okno** (část 3.3). Vespodu se nachází výpis protokolu (část 3.5.9), kde jsou vypisovány výsledky požadavků a informace.

3.3 Mapové okno

Mapové okno zprostředkovává veškeré zobrazovací funkce. Je to plátno (mapová scéna), na které se přidávají dlaždice všech vrstev, mapové grafické prvky nebo text. Nachází se ve středním panelu aplikace.

Obrázek 3.1: Hlavní okno aplikace MapVision

3.4 Menu lišta

Aplikace obsahuje klasickou "menu" lištu, jako běžně užívané programy. Jsou zde k nalezení funkce pro práci s aplikací.

Soubor

- Otevři umožňuje nahrát mapový dokument s nastavením mapového okna nebo přidaných vrstev; mapový dokument je dle specifikace uvedené v 3.12;
- Ulož otevře dialog pro uložení mapového dokumentu MVD;
- Ulož jako přeuloží mapový dokument MVD;
- Konec ukončí aplikaci.

Přidej – k dispozici je přidání různých typů vrstev viz část 3.8.

- Lokální dlaždice;
- Online dlaždice;
- SQLite databázový soubor;
- Georeferencovaný obrázek.

Export – export vrstev viz část 5.2.

- Jako obrázek;
- Rozřezej dlaždice.

 $V \hat{y} b \check{e} r$ – možnosti definice území na mapě;

- Výběr myší pomocí kurzoru "táhnutím";
- Výběr dle souřadnic otevře dialog výběr zadáním souřadnic; obr. 3.2;
- Informace o výběru otevře dialog, který popisuje definovaný výběr viz obr.
 3.3.

Select by rectangle
North-West (topLleft) - South-East (Bottom - right)
North - East (top right)) - South-West (bottom-left)
point A 80°31'55.46"N, 105°28'7.50"W
point B 66°30'47.74"S, 128°40'18.75"E
Apply OK

Obrázek 3.2: Dialog pro definici území dle souřadnic

 ${\bf Zobrazení}$ – záložka s nastavením měřítka mapového okna, jednotlivé možnosti jsou znázorněny v tabulce níže.

zobrazení	zkratka	popis
200%		měřítko mapového okna 200%
150%		měřítko mapového okna 150%
100%	Ctrl + 1	měřítko mapového okna 100%
75%	Ctrl + 2	měřítko mapového okna 75%
50%	Ctrl + 3	měřítko mapového okna 50%
25%	Ctrl + 4	měřítko mapového okna 10%
10%		měřítko mapového okna 25%

Selection info	
Corner nodes (WGS84)	
North West 52°54'32.05"N, 3°30'56.25"E	
South West 46°4'23.63"N, 3°30'56.25"E	
North East 52°54'32.05"N, 21°5'37.50"E	
South East 46°4'23.63"N, 21°5'37.50"E	
Measures	
Width 1175.84	
Height 760.092	
Area 893745	

Obrázek 3.3: Dialog zobrazující informace o výběru

Nastavení – umožňuje nastavit aplikaci MapVision .

Okno – zde je možné zobrazit nebo skrýt veškeré moduly.

Pomoc.

- O aplikaci otevře okno, popisující aplikaci, viz obr. 3.4.
- Vítací okno otevře okno, které se spouští při startu.

3.5 Moduly

Na levé straně se nachází panel, kde se nachází modul *vrstvy* (část 3.5.1) a modul *informace o mapovém okně* (část 3.5.7). Na pravé straně lze nalézt moduly pro práci s mapou a daty. Každý modul obsahuje hlavičku, kde je uveden jeho název a tlačítko *min/max* pro minimalizaci či maximalizaci, tlačítko *dock/undock* pro odebrání či přidání modulu do panelu. Poslední tlačítko *hide* skryje modul. V menu liště se nachází záložka *Window/Okno*, kde je možné veškeré moduly zapnout či vypnout.

About	
MapV	ision
Version	0.8.1
License	LGPL v2.1 Filip Zavadil
Project website Questions and Contact	mapvision.codeplex.com on Facebook "fan page"
	donate OK

Obrázek 3.4: Okno aplikace "O aplikaci"

3.5.1 Vrstvy

Pro zobrazení a nastavování jednotlivých vrstev je využit tento modul. Zde se zobrazí každá mapová vrstva. Jednotlivé položky lze jednoduše přeskupit táhnutím myši. Vrstvy jsou v mapovém okně zobrazeny ve stejném pořadí jako v tomto modulu. U každé položky se nachází zaškrtávací políčko, které označuje viditelnost vrstvy v mapovém okně. Po kliknutí na položku pravým tlačítkem myši se zobrazí kontextová nabídka. Vedle ikonky vrstev se zobrazuje název mapového dokumentu. Pokud není již uložen, zobrazuje se nápis map dokument*, jinak se zobrazuje jméno uloženého mapového dokumentu.

3.5.2 Informace o souřadnicích

Tento modul slouží pro podání informace o souřadnicích. Pokud je zapnut nástroj $k\tilde{r}i\tilde{z}$, lze po kliknutí do mapového okna zjistit souřadnice v systému WGS84 nebo v uživatelem definovaném souřadnicovém systému. Jelikož je použita knihovna PROJ.4, definice je upřesněna právě ve formátu PROJ.4 (ukázka viz kód 2.1), který lze zadat přímo do tohoto modulu. Na obrázku níže je zadaný kód pro definici *Křovákova zobrazení*. Definice lze nalézt na webu¹. Zeměpisné souřadnice WGS84 lze zobrazovat v decimálním formátu nebo ve formátu DMS (Degree Minute Second) v hexagesimální soustavě s udáním

¹http://www.spatialreference.org/

kvadrantu: **N**,**S** (severní, jižní šířka), **W**,**E** (západní,východní délka). Pro přepínání mezi těmito režimy slouží tlačítko *decimal format/degree format*. Pomocí tlačítka *copy to console* lze souřadnice vytisknout do tabulky do protokolu (viz část 3.5.9). Souřadnice definovaného systému jsou v metrech, pokud je v PROJ.4 kódu uvedeno +units=m. Pokud tomu tak není, výstup je automaticky předkládán ve stupních a políčko *degrees* je zaškrtnuté.

3.5.3 Nalezení polohy

Pokud je potřeba vycentrovat mapu na určité souřadnice nebo nalézt polohu v mapě, lze využít tento modul. Souřadnice WGS84 lze zadat v hexagesimálním nebo decimálním formátu. Políčko *zoom* označuje hladinu, na kterou se nastaví mapové okno. Pro tento modul se chystá implementace vyhledávání podle adresy. Využita bude služba **Nominatim**² a databáze **GEONAMES** ³.

3.5.4 Přidání textu

Do mapy lze pomocí tohoto nástroje vkládat text, který lze i formátovat a přizpůsobit. Po kliknutí na tlačítko **add text** se text umístí do středu mapového okna a zároveň se automaticky vybere nástroj **ukazatel**, pomocí kterého lze texty vybírat a posouvat. K dispozici jsou také systémové fonty. Uživatel si může nastavit kromě barvy písma také řez písma (tučně, kurzíva) nebo podtrhnutí či přeškrtnutí.

²http://wiki.openstreetmap.org/wiki/Nominatim ³http://www.geonames.org/

Text	min	dock	hide
addtext		colo	or:
sample			
Arial Black	-	18	¢
bold italic underline	overli	ne	

3.5.5 Obrázkové prvky

Pokud je potřeba do mapy přidat symbol, ikonku nebo obrázek lze s výhodou využít právě tento modul. Modul obsahuje obrázky, které se po dvojitém kliknutí nebo stisknutí tlačítka *add to map* přidají do středu mapového okna. Takto přidané prvky lze snadno všechny vybrat/odznačit nebo skrýt (tlačítka *select all*, *clear all*, *hide all*). Také lze hromadně provádět editace jakými jsou změna průhlednosti nebo měřítka. Uživatel si může do mapy přidat vlastní obrázek kliknutím na tlačítko *load image from file* nebo přidáním obrázku do adresáře map_items, který se nachází v adresáři aplikace. Po restartování programu se načtou nově přidané obrázky. Lze přidat tyto obrázkové formáty: PNG, JPG, TIFF, BMP, SVG. Doporučen je poslední (vektorový) formát SVG(díky jeho škálovatelnosti). Jednotlivé prvky lze posouvat pomocí nástroje *ukazatel* &.

3.5.6 Grafické efekty

Jednou z možností, jak editovat data, je použití grafického efektu. V tuto dobu jsou k dispozici tři efekty:

• stín – nastavuje se odsazení stínu od osy x a y a také poloměr rozostření;

- obarvení zde je možnost vybrat barvu a sílu obarvení;
- rozostření gaussovské rozostření je specifikováno hodnotou poloměr (radius).

Pro aplikaci těchto efektů je nutné vybrat prvek, na který bude efekt použit a kliknout na tlačítko *add effect to selected*. Po kliknutí na *remove effect* dojde k odebrání efektu u vybraného prvku. Efekt lze aplikovat i pro vrstvy map, pokud je vybrána (levé tlačítko myši na modulu vrstvy, viz obr. 3.5.1).

Graphical Effects	min doo	:k hide
Effect:	drop shadow	effect 🔻
Color:		
Blur radius	1 🗘 px	
Offset	8 🗘 8	\$
✓ Preview		
add effect to s	selected remo	ve effect

3.5.7 Informace o mapovém okně

Modul zobrazuje informace o mapovém okně. Nejprve jsou udány souřadnice pod kurzorem myši ve formátu DMS (zeměpisná šířka/délka). Poté následuje políčko *zoom*, které udává informaci o aktuální hladině a *měřítko zobrazení* mapového okna v procentech. Obě položky jsou editovatelné a lze si tak nastavit přesné zobrazení. Následuje přibližné *měřítko mapy* a zaškrtnutelné tlačítko *render* (vykreslování). Pokud není zaškrtnuto, nedochází k vykreslování žádného prvku ani vrstvy.

Map info	dock	hide
83°40'36.99"N,	180°0'0.00	"W
zoom: 2	view: 100) %
scale: 1:79).0 mil. 🗸 r	ender

3.5.8 Informace o výběru

Výběr území se zprostředkuje pomocí nástroje výběr . Tento modul poskytuje informaci o souřadnicích levého horního rohu a pravého spodního rohu. Souřadnice jsou v souřadnicovém systému WGS84 a formátu DMS.

Selection Info	min	dock	hide
North-West			
75°8'26.80"N,	100°1	1'43.12 " V	V
South-East			
10°29'16.12"S	, 76°59	31.88 " E	
copy to consol		opy to clip	board

3.5.9 Protokol

Do tohoto modulu (konzole) jsou postupně vypisovány vybrané akce, které uživatel provedl, nebo jsou zde zobrazeny chybové hlášky aplikace. Je to také místo, kde je možné zapisovat poznámky. Např. modul *Informace o souřadnicích* nabízí výstup (tabulku souřadnic) do tohoto panelu. Na levé straně se nachází tlačítka: *hide* (skrytí modulu), *clear* (vymazání celého protokolu), *save* (uložení protokolu ve formátech: webové prezentace – HTML, richtext – RTF, plaintext – TXT).

3.6 Vítací okno

Ihned po spuštění aplikace se zobrazí "vítací okno" (obr. 3.5), které uživateli umožňuje rychlou navigaci v nápovědě aplikace a zároveň zobrazí tipy při práci s programem. Při kliknutí na dlaždici se otevře internetový prohlížeč s příslušnou stránkou. Uživatel se tak může dozvědět "Jak začít", nahlédnout na internetové stránky projektu, stát se fanouškem na Facebooku, nebo si prohlédnout dokumentaci.

3.7 Sada nástrojů

Nástroje umožňují práci s mapovým oknem a určují chování prvků.

Otevře soubor MVD (MapVision Dokument; mapový dokument), který definuje zobrazené vrstvy a nastavení mapového okna.

Uloží změny v otevřeném mapovém dokumentu MVD.

Přidá mapový set ve struktuře adresářů a obrázků.

Vrstva s mapovými dlaždicemi ve formátu MBTILES.

- Nástroj umožňuje definici výběru v mapě kurzorem myši.
- Slouží pro posouvání a změnu měřítka mapy.

- Změna hladiny zoom o jednotku méně (méně podrobná mapa).
- E Změna hladiny zoom o jednotku více (podrobnější mapa).
- Změna měřítka mapového okna (zmenšení).
- E Změna měřítka mapového okna (zvětšení).
- Překreslí mapové okno a vrstvy jsou znovu načteny.

Obrázek 3.5: Vítací stránka zobrazuje tipy a odkazy pro nápovědu

3.8 Vstupní vrstvy

V současné chvíli jsou k dispozici čtyři typy mapových vrstev. V plánu je další vrstva, která bude využívat službu WMS, která je obecně rozšířenější.

Lokální dlaždice (Tiles-local)

Mapový set nacházející se na úložišti ve struktuře popsané na obrázku 2.9.

Dlaždice online (Tiles-online)

Tato vrstva podporuje služby WMTS,TMS a je díky speciálnímu zápisu přizpůsobitelná mnoha dalším službám. Další informace viz část 3.8.

Georeferencovaný obrázek (Georeferenced Image)

Podpora přidání georeferencovaného obrázku. Georeferencování je zprostředkováno souborem s definicí tzv. WORLDFILE (web mercator), viz oddíl 2.7.

SQLite databáze (MBtiles)

Dlaždice uložené v souborové databázi SQLite jsou podporovány ve formátu MBTILES. V plánu je přidání specifikace podobného formátu, které využívají aplikace Locus nebo MOBAC.

Každá vrstva lze nastavovat skrze *dialog vlastností* (obr. 3.6), který je dostupný přes kontextové menu vyvolané pravým tlačítkem u příslušné vrstvy v *panelu vrstvy*. Je možné nastavit tyto parametry: název vrstvy, zdroj vrstvy, průhlednost vrstvy, referenční bod (souřadnice, hladina zoom) a polohu počátku osy *y*.

🥝 Layer properties -	
Layer name Source http://\${sub[a,b,c]}.tile.openstreetmap.org/\$ {z}/\${x}/\${y}.png	Origin WGS84 - latitude, longtitude 0°0'0.00"S, 0°0'0.00"W Zoom level 1 set actual ref. point go to
Open Opacity	Y-axis origin bottom top Help Cancel Apply OK

Obrázek 3.6: Dialog nastavení parametrů vrstvy

³http://www.mbtiles.org/

Dodatek k online službám

Zápis zdroje online služby byl koncipován tak, aby bylo jednoduché přidat stávající službu, která je podobná službám TMS, WMTS, OSM, Google Map. Příklad URL adresy, která je zadávána do políčka *zdroj*:

```
\texttt{http://}{sub[a,b,c]}.server.org/zoom={z}/x={x}/y={y}.png
```

symbol	popis
${sub[a,b,c]}$	symboly (a,b,c) zastupují název subdomén, které
	služba využívá, aby nebyl zatížen pouze jeden server
\${z}	zastupující znak pro hladinu zoom
\${x}	na místě tohoto znaku bude nahrazeno číslo os y \boldsymbol{x}
\${y}	název osy y , koncovka $(.png)$

Zdroje online služeb

Zde jsou uvedeny zdroje online mapových služeb. Většina z nich má omezené použití, proto je potřeba důkladně prostudovat **podmínky použití**, na které je uveden odkaz pod službami. Odkaz na služby stačí zkopírovat do políčka *zdroj*.

OSM odvozené

 $\label{eq:http://${sub[a,b,c]}.tile.openstreetmap.org/${z}/${x}/${y}.png $$ http://${sub[a,b,c]}.tile.cloudmade.com/(API key)/1/256/${z}/${x}/${y}.png $$ http://${sub[a,b,c]}.tile.opencyclemap.org/cycle/${z}/${x}/${y}.png $$ http://${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${x}/${y}.png $$ http://${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${x}/${y}.png $$ http://${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${x}/${y}.png $$ http://${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${z}/${x}/${y}.png $$ http://${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${z}/${z}/${x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${z}/${z}/${x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${z}/${z}/${x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${z}/${z}/${x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${z}/${x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${z}/${x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/(API key)/7/256/${z}/${z}/${x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/{x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/{x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/{x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/{x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/{x}/${y}.png $$ http:/${sub[a,b,c]}.tile.cloudmade.com/{x}/${y}.png$

podmínky použití: http://www.openstreetmap.org/copyright

 $(API \; key) - \texttt{http://developers.cloudmade.com/projects/tiles/documents}$

MapQuest, 4U map

 $\label{eq:linear} http://mtile0${sub[1,2,3,4]}.mqcdn.com/tiles/1.0.0/vx/map/${z}/${x}/${y}.png http://otile${sub[1,2,3,4]}.mqcdn.com/tiles/1.0.0/sat/${z}/${x}/${y}.jpg \\$

 $http://4umaps.eu/\${z}/\${x}/\${y}.png$

Google maps

 $\label{eq:http://mts}{sub[1,2,3]}.google.com/vt/lyrs=m&x=${x}&y=${y}&z=${z}$ http://mts}{sub[1,2,3]}.google.com/vt/lyrs=s&x=${x}&y=${y}&z=${z}$ http://mts}{sub[1,2,3]}.google.com/vt/lyrs=t&x=${x}&y=${y}&z=${z}$ http://mts}{sub[1,2,3]}.google.com/vt/lyrs=h&x=${x}&y=${z}$ http://mts}{sub[1,2,3]}.google.com/vt/lyrs=h&x=${z}&y=${z}$ http://mts}{sub[1,2,3]}.google.com/vt/lyrs=h&x=${z}&y=${z}$ http://mts}{sub[1,2,3]}.google.com/vt/lyrs=h&x=${z}&y=${z}&y=${z}&y=${z}&y=${z}&y=${z}&y=${z}&y=${z}&y=${z}&y=${z}&y=$

 $podmínky \ použití: \ \texttt{https://developers.google.com/maps/terms}$

3.9 Export

Pro možnosti exportu je zde implementováno uložení mapy jako obrázek nebo jako mapový set. V budoucnu se počítá s možností uložení do souborové databáze SQLite, popř. jiných formátů (SQLite, GeoTIFF, ...).

- Export rastrového obrázku lze definovat výběrem, souřadnicemi nebo dle zobrazené části, nabízí se zde možnost vytvoření i WORLDFILE – souboru pro georeferencování v souřadnicovém systému EPSG:3857. V dialogu pro definici výřezu lze vybrat území dle zobrazené oblasti, zadaných souřadnic, nebo dle výběru myší. Dále je k dispozici nastavení velikosti obrázku v pixelech. Při zaškrtnutí políčka WORLD-FILE se při exportu vytvoří i textový soubor WORLDFILE. Ukázka dialogu je uvedena na obr. 3.7.
- Export mapového setu nabízí možnost rozřezání mapového okna a uložení mapových dlaždic do struktury podobné službě TMS.

🔯 Export Map As Im	age	
1) Input Area		
O Same as display	O Specified bellow	Same as selection
-120.938	76.3519 -71.0741	107.578
2) Image size 325 🗘 🗙 319	🗘 px 🗸 lock i	ratio 100%
	✓ create wor	ldfile Export To

Obrázek 3.7: Dialog pro uložení výřezu mapy

3.10 Klávesy a klávesové zkratky

Pro rychlejší a jednodušší práci s aplikací lze použít klávesové zkratky. Při návrhu zkratek byl brán ohled na "zažité" postupy. Níže jsou zobrazeny a popsány klávesové zkratky aplikace **MapVisi**

klávesa	ikona	funkce
space	Š	posun mapy v mapovém okně při stisknuté klávese
Alt + O		otevření mapového dokumentu MVD
Alt + S		uložení mapového dokumentu MVD
Alt + Shift + S		přeuložení mapového dokumentu MVD
Alt + A		spuštění okna "O aplikaci"
Alt + R		zapnutí/vypnutí vykreslování
Alt + H	~	nástroj pro posun mapy
Alt + S		definice výběru území
Alt + P	\sim	výběr a editace grafických prvků
Alt + C	\diamond	snímání souřadnic
Ctrl + -		zmenší měřítko zobrazení o 10%
Ctrl + +	+	zvětší měřítko zobrazení o 10%
Alt + +	Đ	zvětší hladinu <i>zoom</i> o jednotku
Alt + -	Θ	zmenší hladinu <i>zoom</i> o jednotku
Ctrl R, F5	L'ST	překreslí mapové okno
Ctrl + 1		měřítko zobrazení mapového okna 100%
Ctrl + 2		měřítko zobrazení mapového okna 75%
Ctrl + 3		měřítko zobrazení mapového okna 50%
Ctrl + 4		měřítko zobrazení mapového okna 25%
Alt + I		dialog pro uložení výřezu mapy jako obrázek
Alt + W		spustí "vítací stránku"
Alt + Q		ukončí aplikaci

3.11 Budoucí vylepšení

Zde jsou uvedeny prvky a funkce, které budou postupně implementovány, aby se aplikace stala více využitelnější.

- **SQLite export**: začlenění exportu v těchto formátech: MBTILES (MapBox)⁴ nebo SQLite(Locus⁵, MOBAC⁶);
- **PDF export**: uložení výřezu mapy do formátu PDF;
- WMS: přidání možnosti načítat službu Web Map Service;
- GPX: možnost načítání, editace a exportu formátu GPS exchange Format;

⁴http://mapbox.com/developers/mbtiles/ ⁵http://www.locusmap.eu/

 $^{^{6}}$ http://mobac.sourceforge.net/

- **Vyhledávání adres**: zjištění adresy dle souřadnic a vyhledání polohy podle adresy; využita bude služba Nominatim⁷ a databáze názvů GEONAMES⁸;
- Georeferencování: možnost georeferencovat obrázek (rotace, translace, změna měřítka);
- Editace: přidání vektorové vrstvy, do které bude možno zakreslovat mapové prvky (body, linie, polygony);
- SHP: umožní načítání a export vektorové vrstvy do formátu SHAPEFILE;
- GeoTIFF: umožní načítání a export do georeferencovaného TIFFu;
- GDAL: začlenění funkcí této knihovny.

3.12 Mapový dokument mvd

Pro účely uložení přidaných vrstev a uložení nastavení mapového okna byl vyvinut formát **M**AP**V**ISION **D**OKUMENT - MVD. Ten je založen na značkovacím jazyku XML.

```
Zdroj. kód 3.1: Ukázka MapVision Dokumentu
```

```
<?xml version="1.0"?>
   <!DOCTYPE MapVisionDocument>
   <map desc="my_map" zoom="4" scale="50" created="2012-11-15T08:55:22"</pre>
3
        name="Introduce_MV" owner="Filip" saved="2012-11-16T14:47:10"
4
        longtitude="35.1562" latitude="30.7513">
5
    <layers>
\overline{7}
           <layer opacity="100" zoom="1" zValue="0" type="TMSlocal"</li>
8
                source="C:/testMap/GOOGLE.NAMES" name="GOOGLE.NAMES"
9
                longtitude="0" latitude="85.0511"/>
10
           <layer opacity="100" zoom="1" zValue="1" type="TMSlocal"</li>
12
                    source="C:/testMap/stiny" name="stiny"
13
                longtitude="0" latitude="85.0511"/>
14
    </layers>
15
  </map>
17
```

Aby byl dokument MVD validní a program při jeho nahrávání nespadl, bylo vy-tvořeno *schéma* (šablona), které určuje elementy a atributy dokumentu MVD.

⁷http://wiki.openstreetmap.org/wiki/Nominatim ⁸http://www.geonames.org

element	atribut	popis a funkce
map		element popisující nastavení a metadata mapového okna
	desc	krátký popis mapové scény
	zoom	hladina zoom mapového okna
	scale	měřítko zobrazení mapového okna
	created	datum a čas prvního vytvoření MVD dokumentu
	name	název mapové scény
	owner	jméno uživatele
	saved	datum a čas uložení/přeuložení
	longtitude	zeměpisná délka středu mapového okna
	latitude	zeměpisná šířka středu mapového okna
layers		element sdružující jednotlivé vrstvy
layer		element popisuje nastavení a metadata vrstvy
	name	název mapové vrstvy
	source	zdroj/umístění/url mapové vrstvy
	zoom	zoom hladina referenčního bodu vrstvy
	longtitude	zeměpisná délka referenčního bodu vrstvy
	latitude	zeměpisná šířka referenčního bodu vrstvy
	opacity	nastavení průhlednosti vrstvy
	type	typ vrstvy (lokální/online/mbtiles/georeferenced)
	zValue	pořadí vrstvy v mapovém okně

Tabulka 3.1: Popis elementů a atributů v MVD dokumentu

3.13 Licence

Aplikace **MapVision** je vydána pod licencí **GNU LGPL v2.1** (GNU Lesser General Public License)⁹. U každého souboru se zdrojovým kódem je uvedena preambule informující o právech a možnostech šíření.

This MapVision software is \bigodot Filip Zavadil 2013. It is licensed under the LGPL license. This MapVision software dynamically links to unmodified Qt5 Library.

The Qt5 Library is \bigcirc 2013 Qt (\mathbb{R}) and/or its subsidiary(-ies), and is licensed under the GNU Lesser General Public License version 2.1 with Qt (\mathbb{R}) LGPL exception version 1.1.

Qt5 library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License, version 2.1, as published by the Free Software Foundation. Qt5 library is provided "AS IS", without WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A~PARTICULAR PURPOSE.

⁹http://www.gnu.org/copyleft/lesser.html

As an additional permission to the GNU Lesser General Public License version 2.1, the object code form of a "work that uses the Library" may incorporate material from a header file that is part of the Library. You may distribute such object code under terms of your choice, provided that: (i) the header files of the Library have not been modified; and (ii) the incorporated material is limited to numerical parameters, data structure layouts, accessors, macros, inline functions and templates; and (iii) you comply with the terms of Section 6 of the GNU Lesser General Public License version 2.1.

Moreover, you may apply this exception to a modified version of the Library, provided that such modification does not involve copying material from the Library into the modified Library's header files unless such material is limited to (i) numerical parameters; (ii) data structure layouts; (iii) accessors; and (iv) small macros, templates and inline functions of five lines or less in length.

Furthermore, you are not required to apply this additional permission to a modified version of the Library.

You should have received a copy of the GNU Lesser General Public License along with this package; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

The source code for Qt 5.X SDK is available from Qt Project here: http://qt-project.org/downloads

Kapitola 4

Vývojové prostředí

Celá aplikace byla napsána ve frameworku C++/Qt. Jak již název napovídá, jedná se o objektově orientovaný jazyk C++ s knihovnou Qt, která také obsahuje grafické uživatelské prostředí. Framework Qt je multiplatformní, proto není problém vydat aplikaci pro platformu Windows, Linux nebo MacOS.

Obrázek 4.1: Logo frameworku Qt a mottem

4.1 Historie a vývoj Qt

V roce 1991 začal v norském Oslu vývoj frameworku Qt pod štítkem firmy TrollTech. Nejdříve byl framework šířen jako opensource pouze pro unixové systémy. Pro Windows musela být použita komerční licence. O deset let později, kdy bylo vydáno Qt 3.0, se do seznamu podporovaných platforem zařadil i systém MacOS. Od roku 2003 jsou k dispozici duální licence pro všechny podporované platformy. V roce 2005 byla vydána verze Qt 4.0. O čtyři roky později převzala vývoj společnost Nokia, která do produktu zařadila podporu svého operačního systému pro mobilní telefony Symbian. V roce 2011 prodala Nokia práva a licenci pro komerční projekty společnosti Digia s ujištěním, že duální licence bude zachována. Ke konci roku 2012 byla vydána verze Qt 5.0, ve které je v době psaní této práce aplikace *MapVisi@n* sestavena.

4.2 Licence

Qt $PROJECT^1$ je vyvíjen s otevřeným zdrojovým kódem. Výhodou této skutečnosti je, že může vznikat komunita přispěvovatelů, kteří se mohou zapojit do vývoje. Aplikaci či knihovnu vytvořenou v Qt lze tedy vydávat pod několika druhy licencí.

Opensource licence

V době psaní této práce je možné programy vytvořené v Qt vydávat pod licencí **GNU LGPL v2.1** (GNU Lesser General Public License). Tato licence je představuje střed mezi opensource licencemi GNU GPL a MIT nebo BSD. Programy nebo knihovny s touto licencí nemusí mít narozdíl od GNU GPL stejnou licenci. Lze ji tedy použít v proprietárních aplikacích, musí být ovšem uvedena licence a autor se zachováním otevřeného kódu. Použité knihovny by měly být linkovány dynamicky (mimo hlavní spustitelný soubor). Aplikace *MapVisi@n* je vydána právě pod touto licencí. Alternativně lze využít také licenci GNU GPL v3.0.

Komerční licence

Další možností jak vyvíjet aplikace postavené na Qt, je pod komerční (proprietární) licencí. Ta je spravována společností **Digia**². Tato společnost nabízí produkt Qt Commercial, který nabízí nejnovější Qt knihovnu stejně jako Qt PROJECT. Aplikace či knihovna vydaná pod Qt Commercial může mít jakoukoliv licenci, žádná omezení již nejsou zahrnuta. Zdrojový kód nemusí být také přístupný. S touto licencí je zaručena technická podpora a péče o zákazníka. Knihovny mohou být linkovány staticky.

4.3 Součásti Qt Framework

V Qt SDK (Software Developement Kit) je k dispozici řada nástrojů, která usnadní vývoj celé aplikace od plánování až k jejímu vydání. Níže je uveden seznam vybraných nástrojů, které byly také použity při vývoji aplikace MapVisi [Pro13]

- Qt Creator (obr.4.2) je editor nebo spíše vývojové prostředí, kde je integrována dokumentace. Při psaní aplikace automaticky zvýrazňuje nebo doplňuje kód. Qt Creator obsahuje nástroj na správu verzí. K dispozici je i výkonný debugger.
- Qt Designer je nástroj pro vytváření GUI (grafické uživatelské rozhraní) na základě tzv. *Qt Wigdetů*. Jejich základní seznam je vyobrazen na obr. 4.3.
- Qt Linguist je vhodný pro vytváření jazykových mutací. Přeložit lze všechny hodnoty proměnných QString, které jsou uvedeny jako argument funkce tr().

 $^{^{1} \}rm http://qt-project.org \\ ^{2} \rm http://qt.digia.com$

- Qt Assistant je nástroj pro vytvoření on-line dokumentací nebo nápovědy.
- qmake samostatný program pro sestavení spustitelného souboru; program sám vytváří i Makefiles.

Obrázek 4.2: Prostředí Qt Creator se spuštěným projektem MapVision

4.4 Programy postavené na Qt

Zde je uveden seznam³ vybraných programů, které jsou (celé nebo jejich části) vyvíjeny v prostředí Qt:

- Quantum GIS, • Skype,
- QCad,
- Adobe Photoshop Album,
- GNU Octave, • Amazon Kindle,
- Google Earth, • VLC media player,
- Autodesk Maya, • Konqueror,
- LibreCAD, • Texmaker.

³úplný seznam – http://en.wikipedia.org/wiki/Category:Software_that_uses_Qt

Obrázek 4.3: Qt Designer: widgety pro grafické rozhraní

4.5 Verzování

Pro potřeby uchovávání historie editací během vývoje aplikace se používají tzv. systémy správy verzí. Ty jsou schopny provedené změny uchovávat a následně se k nim vrátit, pokud je v kódu nalezena chyba. V současnosti jsou k dispozici dva typy programů pro správu verzí. Prvním z nich jsou systémy **centralizované** (repozitář je pouze na jednom místě – serveru). Mezi tento typ patří tyto nejpoužívanější opensource programy: CVS, Subversion. Druhý typ zastupují systémy **distribuované** (repozitář může být na lokálním disku). Mezi distribuované systémy patří např. Git, Mercurial, Bazaar. Pro vývoj aplikace **MapVision** a pro spravování této publikace byl využit opensource systém správy verzí **Git**.

Distribuovaný systém správy verzí GIT byl vyvinut původně pro vývoj jádra operačního systému GNU Linux Linusem Torvaldsem. Postupně se však stal samostatným a používaným systémem. Vzdálené "hostování" opensource projektů (na bázi GIT) nabízí mnoho serverů. Namátkou třeba Gitorious⁴, GitHub, Google CODE nebo CodePlex⁵

Aplikace a tato práce je opensource projekt a tedy zdrojové kódy jsou volně dostupné z repozitářů na serveru GITORIOUS.org .

- Projekt MapVision: http://www.gitorious.org/mapvision
- Diplomová práce: http://gitorious.org/mapvision-diploma-thesis

⁴https://www.gitorious.org/ ⁵http://www.codeplex.com/

Kapitola 5

Výběr ze zdrojového kódu

Pro potřeby sestavení aplikace bylo vytvořeno několik tříd. Většina jich je odvozených a využívají metody dědičnosti, kdy se implementují nové vlastnosti existujících tříd z knihovny Qt.

```
1 QString getMapScale()
2 {
3     double resolution=156543.034*cos(this->getCenterLonLat().y()*M_PI/180)
4     /(pow(2,zoom));
5     int dpi = QApplication::desktop()->physicalDpiX();
6     double scale = (dpi * 39.37 * resolution);
7     return QString::number(scale, 'f',0);
8 }
```

Zdroj. kód 5.1: Měřítko mapy závislé na zeměpisné šířce

```
int main(int argc, char *argv[])
1
   {
\mathbf{2}
       QCoreApplication::setApplicationName("MapVision");
3
       QCoreApplication::setApplicationVersion("0.8.1");
4
       QApplication a(argc, argv);
5
       a.setStyle("fusion");
6
       QTranslator translator;
\overline{7}
       a.installTranslator(&translator);
8
       QPixmap pixmap("images/startUpScreen.png");
9
       QSplashScreen splash (pixmap, Qt:::WindowStaysOnTopHint);
10
       splash.show();
11
       MapVision w;
12
       w.showMaximized();
13
14
       splash.finish(&w);
       return a.exec();
15
16
  }
```

Zdroj. kód 5.2: Funkce main()

V následující tabulce je uveden jejich přehled a popis funkcionality. Vybrané třídy jsou detailněji popsány níže.

název třídy	popis
zavaproj	třída pro převod a výpočet souřadnic (část5.1)
about	okno o aplikaci
addselectionrect	třída implementující výběr území
dialogexport	dialogové okno pro export výřezu mapy jako obrázek
dialogexportcutting	dialogové okno pro export mapy jako dlaždice
dialoglayerimg	dialogové okno georeferencovaného obrázku
dialoglayersqlite	dialogové okno SQLite vrstvy
dialoglayertileslocal	dialogové okno lokálních dlaždic
dialoglayertilesonline	dialogové okno online dlaždic
dialogpreferences	dialogové okno nastavení vrstev
dialogpreferencesglobal	dialogové okno nastavení aplikace
dockwidgetaddmapfeatures	třída modulu <i>mapové prvky</i>
dockwidgetconsole	třída modulu <i>Protokol</i>
dockwidgetcoorsinfo	třída modulu Informace o souřadnicích
dockwidgeteffects	třída modulu <i>Grafické efekty</i>
dockwidgetgeneral	rodičovská třída modulů
dockwidgetgeneralleft	rodičovská třída modulů
dockwidgetselectioninfo	třída modulu Informace o výběru
dockwidgettext	třída modulu <i>Text</i>
dockwidgetzoomto	třída modulu <i>Přejdi na</i>
export	třída zajištující funkce exportu (část 5.2)
graphicsfeatureitem	implementace grafického rastrového prvku
graphicsfeatureitemsvg	implementace grafického vektorového prvku
graphicstextitem	implementace grafického textového prvku
layer	rodičovská třída pro jednotlivé typy vrstev, (část 5.3)
layerimg	implementace vrstvy rastrového obrázku
layersqlite	implementace vrstvy SQLite
layertileslocal	implementace vrstvy lokálních dlaždic
layertilesonline	implementace vrstvy dlaždic online
listwidget	implementace panelu "přehled vrstev"
mapdocumet	implementace mapového dokumentu MVD
mapscene	třída přidává vlastnosti třídě QGraphicsScene
mapview	implementace mapového okna, (část5.4)
mapvision	implementace hlavního okna aplikace
selectionrubberband	třída implementuje výběr
welcome	třída implementuje Vítací okno

5.1 ZavaProj

V této třídě jsou implementovány metody pro převod mezi různými druhy souřadnic. Dále je zde implementována funkce pro výpočet vzdálenosti, měřítka nebo pro převod zeměpisných souřadnic do formátu DMS. Tato třída také načítá knihovnu PROJ.4, a díky tomu je k dispozici převod do libovolného souřadnicového systému.

lonlat2tileFormat

Pro účely převodu souřadnic mezi systémem WGS84 a formátem dlaždic lze využít tuto funkci. Vstupní proměnné jsou double lon, double lat (zeměpisné souřadnice), int zoom (hladina "zoom") a Yaxis yaxis (poloha počátku větve y). Výstupní hodnotou jsou souřadnice bodu ve formátu dlaždic (QPoint). Kód lze nalézt v ukázce 5.3.

```
QPoint lonlat2tileFormat(double lon, double lat, int zoom, Yaxis yaxis)
   {
2
3
       QPoint xy;
       int m=pow(2.0, zoom);
4
       xy.setX((int)(floor((lon + 180.0) / 360.0 * m)));
       xy.setY((int)(floor((1.0 - log( tan(lat * M_PI/180.0) + 1.0
6
                / cos(lat * M_PI/180.0)) / M_PI) / 2.0 * m)));
\overline{7}
       // conversion to TMS
8
       if (yaxis = BOPTOM) xy.setY(m-xy.y()-1);
9
       return xy;
10
11
   }
  double Clip(double n, double minValue, double maxValue)
13
14
  {
15
       return std::min(std::max(n, minValue), maxValue);
16
       //return qMin(qMax(n, minValue), maxValue);
   }
17
```

Zdroj. kód 5.3: Převod mezi systémy WGS84 a systémem dlaždic

tileFormat2lonlat

Reverzní funkce k předchozí. QPoint xy, int zoom, Yaxis yaxis slouží jako vstup. Na výstupu se nacházejí zeměpisné souřadnice ve formátu QPointF.

pixels2lonlat

Funkce převede souřadnice z mapové scény v pixelech na souřadnice zeměpisné. QPoint pixels, int zoom jsou vstupní parametry. Výstup jsou zeměpisné souřadnice ve formátu QPointF. Zdrojový kód viz ukázka 5.4.

```
QPointF pixels2lonlat(QPoint pixelPos, int zoom)
2
  {
       double pixelX=pixelPos.x();
3
       double pixelY=pixelPos.y();
4
       double mapSize = 256 << zoom;
5
       double x = (Clip(double(pixelX), 0, mapSize - 1)/double(mapSize)) - 0.5;
       double y = 0.5 - (Clip(double(pixelY), 0, mapSize - 1)/double(mapSize));
       double lat=90-double(360)*atan(exp(-y*double(2)*M_PI))/double(M_PI)
       double lon = double(360.0)*x;
9
       return QPointF(lon,lat);
10
  }
11
```

Zdroj. kód 5.4: Převod mezi systémy WGS84 a pixelovou soustavou

lonlat2pixels

Revezní funkce k předchozí, vstupní parametry jsou QPointF lonlat, int zoom a výstup jsou pixelové souřadnice pro danou zoom hladinu v pixelech ve formátu QPoint.

pixels2tileFormat

Převod souřadnic mapové scény v pixelech na odpovídající dlaždici. Jako vstup slouží proměnné QPoint xy, int zoom, ZavaProj::Yaxis origin a výstup jsou souřadnice dlaždice ve formátu QPoint.

tileFormat2pixels

Převod souřadnic ve formátu dlaždic do mapové scény v pixelech. Vstupní parametry QPoint xy, int zoom, ZavaProj::Yaxis origin. Výstup jsou souřadnice v pixelech ve formátu QPoint.

convertYaxis

Funkce převede souřadnici y u formátu dlaždic na její obdobu v opačném počátku (určena pro odlišnosti mezi službami WMTS a TMS). Vstupní hodnoty jsou int yTile, int zoom a výstup je souřadnice y pro opačný počátek ve datovém typu int.

```
int convertYaxis(int yTile, int zoom)
{
    {
        return pow(2,zoom)-yTile-1;
    }
}
```

Zdroj. kód 5.5: Funkce pro převod mezi soustavami s odlišným počátkem

rectForTile

Funkce pro výpočet ohraničujícího obdélníku dlaždice. Vstupem jsou souřadnice dlaždice (QPoint) a výstupem je definice obdélníku (v tomto případě čtverce) ve formátu QRect.

Zdroj. kód 5.6: Nalezení ohraničujícího obdélníku pro dlaždici

pointForTile

Převod číslování dlaždic na pozici (horní pravý roh) v mapové scéně v pixelech. Vstupem je QPoint tileFormat,int zoom a výstupem jsou souřadnice dlaždice v mapové scéně v pixelech.

dms2lonlat

Funkce obstarává převod z formátu DMS na decimální formát. Vstupem jsou souřadnice ve formátu: 50°20′30″. A výstup jsou souřadnice zeměpisné WGS84 ve formátu QPointF.

lonlat2dms

Reverzní funkce k předchozí. Ze souřadnic v decimálním formátu se převedou na formát DMS.

```
QString lonlat2dms(QPointF lonLat)
\mathbf{2}
  {
       QString lon, lat, DMS;
3
       lon=this->double2dms(lonLat.x(),2);
       lat=this->double2dms(lonLat.y(),2);
       DMS = (lonLat.y()>0) ? lat + "N" : lat + "S";
6
       DMS += ", ";
\overline{7}
       DMS = (lonLat.x() > 0) ? lon + "E" : lon + "W";
8
       return DMS:
9
  }
10
```

Zdroj. kód 5.7: Převod souřadnic z decimálního formátu na hexagesimální

getDistance

Funkce vypočítá délku mezi dvěma body zadanými zeměpisnými souřadnicemi. Výpočet probíhá na kouli a jedná se tedy o ortodromu (nejkratší vzdálenost). Ukázka vzorce viz. 5.8

```
double getDistance(QPointF lonlatA, QPointF lonlatB)
2
   {
         int R = 6371;
3
         double dLat = lonlatA.y() - lonlatB.y();
4
5
         double dLon = lonlatA.x() - lonlatB.x();
         double rad = M_PI / double(180);
6
         dLat *= rad;
7
         dLon *= rad;
8
         double a = \sin(dLat/2) * \sin(dLat/2) + \sin(dLon/2) *
9
                        \sin(d\text{Lon}/2) * \cos(\text{lonlatA}.y() * \text{rad}) * \cos(\text{lonlatB}.y() * \text{rad});
10
11
         double c = 2 * \operatorname{atan2}(\operatorname{sqrt}(a), \operatorname{sqrt}(1-a));
         return R * c;
12
13
   }
```

Zdroj. kód 5.8: Výpočet sférické vzdálenosti mezi body

project

Funkce pro převod zeměpisných souřadnic (WGS84) do libovolných referenčních souřadnicových systémů. Vstupem jsou decimální souřadnice (QPointF) a kód PROJ.4 (QString). Výstup jsou souřadnice ve zvoleném systému (QPointF).

```
QPointF project (QPointF lonlat, QString proj4CODE, bool isDegree)
2
   {
        double x,y;
3
        projPJ out, in;
4
       x = lonlat.x();
\mathbf{5}
       y = lonlat.y();
6
       x*=DEG_TO_RAD;
7
       y*=DEG_TO_RAD;
8
        if (!(out = pj_init_plus(proj4CODE.toUtf8()))){
9
            QMessageBox msgBox;
10
            msgBox.setText("The_input_projection_is_invalid!_");
11
12
            msgBox.exec();
            return QPointF(NULL,NULL);
13
                                             }
        if (!(in = pj_init_plus("+proj=latlong_+ellps=WGS84
14
   ----+datum=WGS84_+no_defs"))) return QPointF(NULL,NULL);
15
        if (!pj_transform(in,out,1,1,&x,&y,NULL)) {
16
17
            if (isDegree){
                x*=RAD_TO_DEG;
18
                y*=RAD_TO_DEG;
19
20
            }
            return QPointF(x, y);
21
22
        }
        else return QPointF(NULL,NULL);
23
   }
24
```

Zdroj. kód 5.9: Převod mezi WGS84 a definovaným ref. souř. systémem

lonlat2UTM

Převod ze zeměpisných souřadnic do souřadnic referenčního systému web mercator (EPSG:3758).

UTM2lonlat

Reverzní funkce k předchozí. Vstupem jsou souřadnice v systému web mercator (QPointF) a výstupem jsou souřadnice zeměpisné WGS84 (QPointF).

```
1 QPointF UTM2lonlat(QPointF xy)
2 {
3     double lon = (xy.x() / 20037508.34) * 180;
4     double lat = (xy.y() / 20037508.34) * 180;
6     lat = 180/M_PI * (2 * atan(exp(lat * M_PI / 180)) - M_PI / 2);
7     return QPointF(lon, lat);
8 }
```

Zdroj. kód 5.10: Převod souřadnic z web mercator do WGs84

5.2 Export

Tato třída má implementovány dvě hlavní metody. První je export výřezu mapy jako obrázek se souborem WORLDFILE a druhá je export v podobě mapových dlaždic.

5.2.1 Export výřezu mapy

Tato funkce aplikace **MapVision** je implementována v třídě **DialogExport**. Nejprve je zavoláno dialogové okno (obr. 3.7), kde se v první sekci nastaví, jak je definován výřez. Ten může být určen:

- $\bullet\,$ zobrazeným územím,
- zadanými souřadnicemi,
- nebo nástrojem selekce .

V další sekci je možné upravit rozměry obrázku, které jsou z počátku nastaveny na 100% velikost. Lze také zamknout poměr stran, aby nedocházelo k deformaci. Je zde také obsaženo tlačítko, které nastaví 100% rozměry.

Dále se v okně nachází zaškrtávací políčko *vytvoř worldfile* a tlačítko *exportuj*, které po kliknutí spustí další okno pro výběr adresáře a názvu souboru.

```
// zjištení rozměru obrázku
  int height = zavaProj.lonlat2pixels(rect.bottomRight(),map->getZoom()).y()-
2
  zavaProj.lonlat2pixels(rect.topRight(),map->getZoom()).y()
3
  int width = zavaProj.lonlat2pixels(rect.topRight(),map->getZoom()).x()-
4
   zavaProj.lonlat2pixels(rect.topLeft(),map->getZoom()).x();
   // levý horní roh obrázku
7
  QPoint topLeft = zavaProj.lonlat2pixels(rect.topLeft(),map->getZoom());
8
  // rendrování
10
11 QPainter * painter = new QPainter(newImage);
_{12} map->getScene()->render(painter, QRectF(QPoint(0,0), imageSize),
13 QRectF(topLeft, QSize(width, height)), Qt:::KeepAspectRatio);
  QtConcurrent :: run (this, & DialogExport :: saveMap, newImage, fileName);
15
  // vytvoření souboru worldfile
17
  if (ui->checkBoxCreateWorldFile->isChecked()){
18
          QRect rectPixels(topLeft, QSize(imageSize));
19
          this->createWorldFile(rectPixels, rect, fileName);
20
  }
21
```

Zdroj. kód 5.11: Uložení výřezu mapy

Při vytváření souboru WORLDFILE program nejprve vypočte souřadnice výřezu. Dále je vypočteno rozlišení (metr/pixel). Rotace dle os x, y není brána v potaz. Poté jsou vypočtené hodnoty zapsány do výstupu a je uložen textový soubor ve formátu specifikovaném v oddíle 2.10.

```
void createWorldFile(QRect pixelRect, QRectF lonlatRect, QString imgFilename
 1
   {
\mathbf{2}
       QUNUSED(lonlatRect)
3
        QPointF utmTopLeft = zavaProj.lonlat2UTM(rect.topLeft());
4
        QPointF utmBottomRight = zavaProj.lonlat2UTM(rect.bottomRight());
 \mathbf{5}
        double diffX = utmBottomRight.x() - utmTopLeft.x();
7
        double diffY = utmTopLeft.y() - utmBottomRight.y();
8
        double resX = diffX / pixelRect.size().width();
10
11
        double resY = diffY / pixelRect.size().height();
        QPointF coors = utmTopLeft; //+ QPointF(resX/2,resY/2);
13
        QString output = QString::number(resX, 'f', 16) + "n" + "0n-0n" +
15
        QString:: number(-\text{resY}, \text{'f'}, 16) + \text{"} \setminus \text{n"};
16
        output += QString::number(coors.x(), 'f',9) + "\n" +
17
```

```
18
        \mathbf{QString}:: number (coors.y(), 'f', 9);
        // write WORLDFILE
20
        QString fileName = imgFilename;
21
        fileName.remove(imgFilename.size() -2, 1);
22
        fileName+="w";
23
        QFile *textak = new QFile(fileName);
25
        if (textak->open(QIODevice::ReadWrite)){
27
            QTextStream out(textak);
28
29
            out << output;
        }
30
        textak->close();
32
   }
34
```

Zdroj. kód 5.12: Vytvoření souboru worldfile

5.2.2 Export mapových dlaždic

Tato metoda nejprve zmenší mapové okno na rozměry $512 \times 512px$ a nastaví měřítko zobrazení na 100%, jelikož před uložením jsou mapové dlaždice zobrazeny na scéně. Poté jsou pro každou hladinu zoom vypočteny souřadnice výběru v pixelech, podle kterých se posouvá střed mapového okna. Je definována oblast o rozměrech ($256 \times 256px$) a následně je dlaždice uložena do určitého adresáře a pod určitým názvem.

```
void Export:: cutting (QList<int> zooms, QString path)
 1
 2
    {
        // uložení rozměrů mapového okna
 3
        QSize preSize = map->maximumSize();
 4
        int preZoom = map->getZoom();
 \mathbf{5}
        QPointF preCenter = map->getCenterLonLat();
 6
        // zmenšení rozměrů mapového okna
 \overline{7}
        map \rightarrow set Maximum Size(512,512);
 8
        map \rightarrow set View Scale(100);
 9
        // nastavení čítačů
10
11
        int countTemp=0;
        int countTemp2=0;
12
             // pro zvolené hladiny zoom
13
        foreach (int z, zooms) {
14
             map \rightarrow setZoom(z);
15
             map—>refresh();
16
17
             QTimer t;
18
             t.start(500);
19
             QEventLoop loop; // smyčka po 500msec
```

```
QObject::connect(&t, SIGNAL(timeout()),&loop, SLOT(quit()));
20
21
            loop.exec();
                    // definice území pro rozřezání
23
            QPoint NW = zavaproj.pixels2tileFormat(selection ->
^{24}
            getRectPixels(z).topLeft(),z,ZavaProj::BOFTOM);
25
            QPoint SE = zavaproj.pixels2tileFormat(selection ->
26
            getRectPixels(z).bottomRight(), z, ZavaProj::BOFTOM);
27
            // nastavení mapy na počátek
29
            map->setCenterLonLat(
30
            zavaproj.tileFormat2lonlat(QPoint(NW.x(),SE.y()),z,
31
            ZavaProj::BOFTOM));
32
            // přelet nad jednotlivými dlaždicemi
34
            for (int x=NW.x(); x <=SE.x(); x++)
35
                for (int y=SE.y(); y<=NW.y(); y++)
36
                    map->setCenterLonLat(
37
                    zavaproj.tileFormat2lonlat(QPoint(x,y),z,ZavaProj::BOFTOM));
38
                    renderTiles(path, z, x, y);
40
                    countTemp++;
41
                    countTemp2++;
42
                }
43
            }
44
       }
45
        // nastavení mapového okna zpět na původní velikost
46
       map->setZoom(preZoom);
47
       map->setCenterLonLat(preCenter);
48
       map->setMaximumSize(preSize);
49
50
   }
```

Zdroj. kód 5.13: Vyříznutí mapové dlaždice

```
void renderTiles(QString path, int z, int x, int y)
1
   {
\mathbf{2}
        QImage img(QSize(256,256),QImage::Format_ARGB32);
3
        painter = new QPainter();
4
        painter->begin(&img);
\mathbf{5}
        map->getScene()->render(
6
        painter, QRect(0,0,256,256),
7
        \mathbf{QRect}(\mathbf{QPoint}(x*256, zavaproj. convertYaxis(\mathbf{QPoint}(x, y), z). y()*256),
8
9
        QSize(256, 256)), Qt::KeepAspectRatio);
        saveMapTile(path, z, x, y, img);
10
        painter ->end();
11
  }
12
```


5.3 Layer

Třída Layer je rodičovská třída třída, ze které dědí ostatní vstupní vrstvy (LayerIMG, LayerSQLite, LayerTILESlocal, LayerTILESonline). Pro práci s vrstvami je zde implementováno několik veřejných metod:

- Nastavení a vypsání názvu vrstvy QString getLayerName(); void setLayerName(QString layerName2);
- Zdroj vrstvy (cesta ke struktuře adresářů, url adresa)
 QString getSource();
 void setSource(QString source2);
- Nastavení viditelnosti bool getVisible(); void setVisible(bool is);
- Pořadí vrstvy int getZvalue(); void setZvalue(int zValue2);
- Změna průhlednosti qreal getOpacity(); void setOpacity(qreal opacity2);
- Nastavení referenčního bodu
 QPointF getLonlatOrigin();
 QString getLonlatOriginString();
 int getZoomOrigin();
 void setOrigin(QPointF lonlat,int zoom);

5.4 MapView

Třída MapView rozšiřuje a dědí ze třídy QGraphicsView. Je uzpůsobena pro práci s mapou a mapovým oknem a prvky mapy.

- Plátno mapové scény MapScene* getScene();
- Nastavení středu mapového okna je možné decimálním formátem, nebo také fromátem DMS

```
void setCenterLonLat(QPointF lonLat);
void setCenterLonLat(QString dmsFormat);
QPointF getCenterLonLat();
```

- Nastavení hladiny zoom void setZoom(int zoom); int getZoom();
- Nastavení měřítka zobrazení void setViewScale(int viewScale); int getViewScale();
- Funkce vypíše měřítko mapy ve formátu QString QString getMapScale(); viz kód 5.1;
- Souřadnice (wgs84) rohů zobrazené oblasti QRectF getRectLonlat();
- Vypnutí zvolené vrstvy void tilesVisible(QString layerName, bool isVisible);

```
void MapView::mouseDoubleClickEvent(QMouseEvent *event)
1
   {
\mathbf{2}
        if (panEnabled) {
3
            QPointF posCenter=getCenterPixels();
4
            QPointF posScene=this->mapToScene(event->pos());
\mathbf{5}
            QPointF delta = posCenter-posScene;
6
            if (event->button()==Qt::LeftButton){
\overline{7}
                 if (zoom < 20) zoom ++;
8
                 emit zoomChanged(zoom);
9
                 this->setCenterPixels(posCenter*2-delta);
10
            } else if (event->button()==Qt::RightButton){
11
                 if (zoom>=1) zoom--;
12
                 emit zoomChanged(zoom);
13
                 this->setCenterPixels(posCenter/2+delta);
14
15
            }
            this->update();
16
17
        QGraphicsView::mouseDoubleClickEvent(event);
18
19
  }
```

Zdroj. kód 5.15: Implenetace změny zoom při dvojitém kliknutí

Kapitola 6

Závěr

Byla vyvinuta a vydána aplikace MapVision. Cílem a přáním autora je, aby aplikace mohla být v praxi využita a byla tím prospěšná a to nejen odborné veřejnosti, ale i lidem, kteří mají mapy jako svého koníčka a věnují se jim ve svém volném čase.

Během vývoje vyvstaly mnohé problémy, které se autor snažil vnímat spíše jako výzvy. Díky tomuto přístupu se vývojář v této oblasti velmi obohatil a mnohé se naučil. Zajímavý je též proces vývoje od úplných začátků až po vydání první verze, tedy přemýšlení, náčrty a pak kódování. Často se též stává, že už během programování se mění konečné využití aplikace. Kódu tedy stále přibývá a celá aplikace se stává složitější a komplexnější. Jak známo, aplikace není nikdy dokonalá, a vždy autor nachází místa, která by bylo možné vylepšit nebo přidat novou funkcionalitu.

Zadání diplomové práce bylo splněno v plném rozsahu. Aplikace navíc obsahuje mnoho dalších funkcí, díky kterým se je využitelnější. Aplikace je nyní využívána také pro úpravu off-line mapových balíčků pro mobilního průvodce PhoneMaps.

V době vázání této práce byla aplikace **MapVisi** ve vývojové verzi 0.8.1 a probíhalo její testování, proto je možné, že aplikace "zamrzne" u neočekávané operace. Pro nahlašování chyb (bugů) slouží webové stránky projektu: http://mapvision.codeplex.com . Zdrojový kód aplikace a spustitelné soubory (Windows) spolu se vzorovými daty jsou na přiloženém CD.

Literatura

- [Ait11] Alastair Aitchison. The google maps / bing maps spherical mercator projection. http://alastaira.wordpress.com/2011/01/23/ the-google-maps-bing-maps-spherical-mercator-projection/, January 2011.
- [ESR09] ESRI. About world files. http://webhelp.esri.com/arcims/9.2/general/ topics/author_world_files.htm, December 2009.
- [OCG11] OCG. Opengis web map tile service implementation standard. http://www.opengeospatial.org/standards/wmts, June 2011.
- [ope13] opestreetmap.org. Slippy map. http://wiki.openstreetmap.org/wiki/ Slippy_Map, May 2013.
- [OSG12] OSGeo. Tile map service specification. http://wiki.osgeo.org/wiki/Tile_ Map_Service_Specification, May 2012.
- [Při08] Petr Přidal. Tiles Á la google maps: Coordinates, tile bounds and projection. http://www.maptiler.org/ google-maps-coordinates-tile-bounds-projection, July 2008.
- [Pro13] Qt Project. Qt 5.0 documentation. http://qt-project.org/doc/qt-5.0/ qtdoc/index.html, April 2013.
- [Sch07a] Joe Schwartz. Bing maps tile system. http://msdn.microsoft.com/en-us/ library/bb259689.aspx, January 2007.
- [Sch07b] Joe Schwartz. Understanding scale and resolution. http://msdn.microsoft. com/en-us/library/aa940990.aspx, January 2007.
- [Zav09] Filip Zavadil. Svg a xls transformace využitelné v kartografii. http://svg. filipzava.cz/Bakalarska_prace.pdf, May 2009.

Rejstřík

barevná hloubka, 15 caching, 1, 14 dms, 21 git, 37 GNU GPL, 35 google mercator, 7 gui, 17 konsole, 25 layer, 48 mapová scéna, 17 mapové dlaždice, 14 mapové okno, 17 mapové služby, 3 MapVision dokument, 31 menu, 18 modul, 20 mvd, 31 nástroje, 25 OGC, 3 OSGeo, 4 panel, 20 pixely, 10 plátno, 17 protokol, 25 Qt, 34 schéma dlaždic, 10

TMS, 6 verze, 37 web mercator, 7, 9 WMTS, 6 worldfile, 12