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Abstract  

This thesis presents mapping of two climate variables: mean air temperature and 

precipitation over the Czech Republic using spatial interpolation of climatological data. 

Geographical information is used to predict the climatological variables through a 

regression relationship. Geographic Information System ArcGIS provides the means to 

produce climatological surfaces for the entire Czech Republic between the years          

1998–2009. The temporal resolution of the maps is annual and the spatial resolution is 

90 m.  

Climatological data were obtained from a small subset of only 22 meteorological stations 

available online at the Czech Hydrometeorological Institute websites. More detailed data 

from 132 stations – were obtained only for the year 2008 and were used for independent 

tests of accuracy. Monthly radar data were also obtained for the year 2008 for testing 

purposes. Chapter 5 presents a separate study about using radar in precipitation modeling.  

Independent variables were derived from a 90 m digital elevation model (DEM) acquired 

by the Space Shuttle Radar Topographic Mapping Mission (SRTM). Significant 

independent variables for predicting mean temperature were altitude and latitude. Four out 

of 28 independent variables were selected for precipitation: altitude, longitude, latitude and 

variable ZxW25 depicting topographical barriers in a specific westerly direction and radius 

of 25 km. The final regression models show a high degree of explained variance for mean 

air temperature (R2 = 0.90–0.97, and root-mean-squared error RMSE = 0.40 °C) and a 

moderate degree of explained variance for precipitation (R2 = 0.78–0.92, 

RMSE = 106 mm). This study provides a deeper analysis of the influence of topography on 

mean temperature and precipitation in the Czech Republic. 

Annual variation in mean air temperature and precipitation as well as deviation from      

40-year normals was visualized in an animated map. Final climatological surfaces were 

published interactively using UMN MapServer and ka-Map template.  
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Abstrakt  

Předkládaná diplomová práce se zabývá mapováním dvou klimatických prvků v České 

republice: roční průměrné teploty vzduchu a průměrného ročního úhrnu srážek. 

Geografický informační systém ArcGIS slouží jako nástroj pro vytvoření klimatických 

vrstev pro celou Českou Republiku v prostorovém rozlišení 90 m v období 1998–2009.  

Klimatické veličiny jsou měřeny na meteorologických stanicích, které jsou volně dostupné 

na webu Českého hydrometeorologického úřadu (ČHMÚ), a kterých má tato práce 

k dispozici pouhých 22. Úřadem byla poskytnuta data ze 132 stanic, avšak pouze pro rok 

2008. Tato data byla použita k nezávislému uřčrení přesnosti výsledných klimatických 

veličin. Dále byly od ČHMÚ získány měsíční sumy srážkových úhrnů měřené radarově 
také pro rok 2008. Využítím radarových měření k mapování ročního úhrnu srážek se 

zabývá samostatná kapitola 5.   

Bodová klimatická měření byla interpolována do prostoru pomocí vícenásobné regresní 

analýzy a korigována lokální interpolací reziduí. Nezávislé veličiny byly odvozeny z 

z globálního digitálního modelu terénu (DEM) Space Shuttle Radar Topographic Mapping 

Mission (SRTM). Jako nezávislé veličiny v teplotním regresním modelu byly na základě 
statistických testů vybrány dvě veličiny, nadmořská výška a zeměpisná šířka. V případě 
srážek byly z celkového počtu 28 nezávislých veličin vybrány čtyři: nadmořská výška, 

zeměpisná šířka a délka, a veličina ZxW25 charakterizující terénní překážky ve směru na 

západ do vzdálenosti 25 km. Použitý regresní model průměrné teploty vykazuje silný vztah 

s nezávislými veličinami  (R2 = 0.90–0.97 a střední chyba RMSE = 0.40 °C) a model 

srážek uspokojivý vztah s nezávislými veličinami (R2
 = 0.78–0.92, RMSE = 106 mm). 

Díky použité metodě umožňuje tato práce hlubší pohled na závislost klimatu na topografii 

v České Republice.  

Rozdíly průměrných teplot vzduchu a srážek mezi jednotlivými roky, a také jejich 

odchylek od čtyřicetiletého normálu, jsou nejlépe patrné z animovaných map. Výsledné 

klimatické vrstvy byly zveřejněny interaktivně pomocí UMN MapServer a šablony         

ka-Map.  
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1 Introduction 

Spatial modeling of climate variables is of wide interest since many other environmental 

variables depend on climate. Climate maps are needed in disciplines related to Earth 

Sciences such as hydrology, forest management, agriculture, ecology, urban environments, 

energy, and climate change. [31, 37] These environmental disciplines use spatial 

information of climate as a basis for understanding the processes they study. Climate does 

not only influence the environmental disciplines, but also affects whole economies of 

many countries and the lives of their citizens, mainly in planning and management of all 

logistics involved in transportation of people and goods. [16] Therefore, the monitoring 

and analysis of climate and weather conditions can be beneficial to many areas.  

There is a need for detailed continuous climate surfaces in digital form. [38] Daly et al. 

introduce the discipline called geospatial climatology, ‘the study of the spatial patterns of 

climate and their relationships with geographic features’. [15] As the climate 

measurements are typically point source in nature, one of the challenges facing 

meteorology is the interpolation of point climatological phenomena across a wide spatial 

domain. [8] Accurate climatological data are collected at meteorological stations (in 

further text often referred to as ‘stations’), which are discrete point locations in space. 

Values at any other point must be derived from neighboring stations or from relationships 

with other variables. [31] The method of spreading discrete measurements over an area is 

called spatial interpolation. Various interpolation methods have been taking into account 

geographic information by using Geographic Information Systems (GIS). 

Over the last decade, the use of GIS in a variety of applications involving the processing 

of climatological and meteorological data has rapidly increased. Climatological datasets 

can be displayed in GIS in a variety of ways, for example: rainfall measurements as point 

features, rain radar as rasters, and isolines as vectors. In weather forecasting, GIS has 

become a key management component in weather processing systems allowing 

instantaneous plotting, interpolation and animation of weather data. [8] GIS are no more 

used only as spatial visualization facility, but have evolved into powerful management 

tool used for capturing, modeling, and analyzing spatial data. Climatological and 

meteorological phenomena are naturally spatially variable and hence GIS represent a 

useful solution for the management of vast climate datasets.  
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As the climate and geography are closely related, one can study this relationship and then 

use it to model the climate. The geographic information often comes from digital elevation 

model (DEM). DEMs have enabled good estimates of an area’s climatology without the 

need of extensive weather records. [8] DEMs were traditionally derived using land 

surveying techniques but are now determined remotely using radar, e.g. the Shuttle Radar 

Topography Mission (SRTM). SRTM captured topographic data for 80% of the Earth’s 

land surface at a resolution of up to 30m. [8] Remotely sensed DEM are manipulated into 

GIS and can then provide a baseline for climatological datasets. Remote sensing has also 

provided other inputs in climate modeling, such as NDVI (normalized vegetation index) 

and LST (land surface temperature), which have been used as independent variables in 

regression models to enhance local differences. [13] Remote sensing enables the 

acquisition and calibration of comprehensive datasets whereas GIS provides a standard 

means to display, overlay, and combine the data for analysis, which makes remote sensing 

and GIS intimately related. For example, studies regarding the urban heat island 

phenomenon integrating remote sensing data with GIS assess how temperature is spatially 

influenced by land use. [8]  

1.1 Objectives 

This study has several objectives: Firstly, to select the most suitable mapping and spatial 

interpolation method that takes into account geographical variables, and uses GIS 

techniques to obtain maps of different climatological variables over a relatively large area 

of the whole Czech Republic (CR). This study intends to explore the utility of regression 

analysis, which allows the studying of topographic influence on spatial climate patterns. 

The next sub-objective is derived from the interpolation technique applied to create the 

cartography. It is to investigate and select meaningful geographic factors, which play an 

important role in annual mean air temperature and precipitation modeling in the area of 

CR. The second objective is to evaluate the use of radar data in precipitation modeling. The 

third and last is to publish the results in an interactive manner on the Internet using a 

MapServer. 

Resulting maps will show the annual change in mean air temperature and rainfall patterns 

over the past twelve years and more importantly, the recent years will be compared to the     

long-term 30-year mean (normal) for both climate variables, which can provide an insight 

into the problem of the climate change.  
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2 Literature Review 

Chapman and Thornes [8] review the role of GIS in climatology and meteorology by discussing 

methods used to derive and refine factual climatological applications in various disciplines: In 

agriculture, there is massive potential for ‘agroclimatic’ modeling in order to predict yield by 

combining maps of soils, nutrients, climate, weather stress, fertility, etc.   In hydrology, 

measurements of precipitation are an obvious starting point for many hydrometeorological 

models including floods. The opposite extreme to flooding is modeling the distribution of 

droughts, which can be used for fire alert systems. In forestry, GIS is used to model and monitor 

the spread of forest fires via the combination of climatological and remotely sensed imagery. In 

ecology, biodiversity modeling has been successfully applied in studies such as distribution of 

plants with respect to rainfall. In urban environments, climatological data can provide 

information regarding pollution, but is mostly directed at studying the urban heat island 

phenomenon. In energy, temperature and humidity are the primary factors controlling energy 

demand. For example, GIS has been used to aid the locations of wind farms by modeling wind 

energy potential. [8]  

All of the environmental disciplines above are potentially subjects to the impact of climate 

change. Hence, the assessment of the effects of climate change is truly a multidisciplinary 

exercise of which GIS provides a fundamental unifying role. GIS has become a processing and 

visualization tool for climate models. Such models can predict the global impacts of 

hypothesized climate change scenarios. [8] 

The broadest group of studies regarding temperature and precipitation modeling starts from the 

premise that altitude and elevation explain most of the spatial variability but proceed to evaluate 

other factors such as terrain attributes (aspect and morphology of the relief), atmospheric factors 

(humidity and wind) and maritime factors (distance from coast and effects of sea currents). [11] 

The second group of studies addresses the maximum efficiency of statistical and geostatistical 

interpolation techniques. For example, Hutchinson [26] develops a method called thin-plate 

smoothing splines which is then used in works of Lapen and Hayhoe [29] or Hijmans et al. [25].  

Many studies dealing with modeling of climate are focusing on mountainous regions [29, 31, 46, 

50], where climate variables are difficult to predict due to the topographic complexity which 

generates microclimate environments. [15] Squires and McNab [45] as well as Marquinez [31] 

claim that interpolation using traditional techniques (IDW, kriging, etc.) is not accurate enough 

especially in mountainous regions. 
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Vincente-Serrano et al. [50] provided a comparative analysis of interpolation methods 

applied to annual precipitation and temperature. The study was carried out in the north east 

of Spain in a valley where geographic and spatial climate diversity is significant. 

Interpolation methods tested include: global interpolators (trend surfaces and regression 

models), local interpolators (Thiessen polygons, inverse distance weighting, splines), 

geostatistical methods (simple kriging, ordinary kriging, co-kriging, etc.) and mixed 

methods (combined global, local and geostatistical methods). Vincente-Serrano et al. 

obtained the best results using geostatistical methods and a regression-based model. The 

authors concluded their study by stressing out the importance of testing various 

interpolation methods before the most appropriate scheme for a given area and climatic 

variable is selected. 

Goodale et al. [20] interpolated temperature and precipitation in Ireland by means of 

polynomial regression, using latitude, longitude, and altitude derived from a 1km DEM as 

predictors. Guler et al. [22] used a simple linear regression to assess spatial climatic layers 

at finer spatial resolution of 250m in Samsun, Turkey. Gyalistras [23] developed a 50-year 

(1951-2000) dataset for Switzerland. His approach for modeling mean monthly 

temperature and precipitation is a method called AURELHY (analysis using relief for 

hydrometeorological applications) and is based on principal component analysis and 5 km 

DEM. Unlike other studies, he did not consider mean values, but rather presents the 

amplitudes of climatic variables. Brown and Comrie modeled winter temperature and 

precipitation in Arizona and New Mexico, USA for the period 1961–1990. They used 

regression models at 1 km resolution and kriging or IDW interpolation to account for 

model residuals. [6] 

While most of the studies focus on one country or one region within one country, Agnew 

and Palutikof [1] constructed maps of mean seasonal temperature and precipitation for the 

whole Mediterranean on a grid of 1km spatial resolution. Their regression-based approach 

included longitude, latitude, elevation, distance and direction to the nearest coast, slope, 

aspect, and the ratio of land to sea. Hijmans et al. [25] created global monthly precipitation 

and temperature surfaces at 1 km resolution.  

In the CR, the Climate Atlas of Czechia was published in 2007 by the Czech 

Hydrometeorological Institute (CHMI) in cooperation with experts from the Department of 

Geomatics at the Palacky University in Olomouc. The Atlas is a paper book compilation 

comprising over 300 maps and presents results of long-term (1961–2000) climatological 
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measurements divided into 11 sections. Horizontal resolution of the maps is 500 m. The 

authors use a regression approach to create so called ‘fictive stations’ in order to have 

sufficient spatial density of observations, which they then interpolate with the IDW or 

kriging interpolation. They also consider linear regression for variables significantly 

dependent on elevation. Mean temperature for example was calculated from 311 stations. 

[28] More information about data processing in the Climate Atlas of Czechia can be found 

in [10]. Authors of the Climate Atlas of Czechia mention a warming trend of about 0.03 °C 

per year based on annual average temperature between 1961–2000. [48] Although the Atlas 

is so complex and well presented, it is only available in hard copies and at large scales 

from 1:1 000 000 to 1:5 000 000. One of this thesis’ objectives is to publish resulting 

digital maps on the internet, in a similar way as in the Digital Climatological Atlas of Spain 

at http://opengis.uab.es/wms/iberia/mms/ . Another objective is to produce 

up to date maps for the recent years, which can be compared to the long-term normals.  

The work of Ninyerola et al. [36-38] is seen as the key study regarding this thesis. The 

reasons why are further described in sections 2.1.1 and 2.1.2. 

2.1 Mean Air Temperatures 

An exhaustive comparison of eight different interpolation methods for temperature 

estimation can be found in a conference paper by F. C. Collins. [12]  

Ninyerola et al. present a mapping technique of monthly and annual mean temperature 

over the entire Iberian Peninsula. The spatial interpolation method is based on multiple 

regression (statistical global analysis) with residual correction (local interpolation). This 

method allows exploring the relationship between climatic elements (such as mean air 

temperature) and independent geographical variables. As the most accurate interpolation 

technique they find the multiple regression with residuals interpolated using IDW. The 

authors not only test various interpolation techniques, but also compare global versus 

regional models. Ninyerola et al. claim that the best results for the entire peninsula are 

obtained when the model uses all stations together and not only regional subsets. The 

authors use altitude, latitude, continentality, solar radiation and a cloudiness factor as the 

independent geographical variables, which are elaborated from a 180 m resolution DEM. 

Ninyerola et al. describe this method as both empirical and statistical.  Empirical, because 

it uses data obtained from stations for building and for validating the model and statistical, 

because it is based on a multiple regression analysis and its corresponding validation. The 
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authors believe they created a ‘very simple, useful and realistic model’.  

Luis Rodríguez-Lado et al. [41] proved that multiple regression with residual correction for 

mapping air temperature of the State of São Paulo in Brazil at 0.5 km spatial resolution is 

an accurate method. Claps et al. [11] modeled monthly and annual mean temperatures 

based on 1 km DEM using linear multivariate regression analysis, a technique very similar 

to Ninyerola’s. Significant variables were altitude, latitude, distance from the sea and 

terrain concavity. For the interpolation of residuals, ordinary kriging was used.  

2.2 Precipitation 

Daly et al. [15] introduced in USA well established regression model called PRISM 

(parameter-elevation regression on independent slopes model), which  had been developed 

at the Oregon State University. It is a knowledge-based system, which combines the 

strengths of both human expert and computer based statistical methods. The model uses a 

weighted climate-elevation regression function which stresses out the dominant influence 

of elevation on climate. Aspect and topographic exposure are also accounted for in the 

PRISM model. The maps including gridded datasets are available online at 

http://www.prism.oregonstate.edu/ .  

Basist et al. [3] developed statistical relationships between topography and mean annual 

precipitation for ten distinct mountainous regions around the world. Among the 

topographic variables studied, exposure to the prevailing winds was the single most 

important feature. Sun at el. [46] carried out a multivariate regression analysis combined 

with residuals correction to predict precipitation in the Daqing Mountains, Inner Mongolia 

in China. For the multivariate regression analysis, they used five topographic factors: 

altitude, slope, aspect, longitude and latitude in a third-order polynomial regression 

equation. The topographic factors for the area of about 9300 m2 were derived from a 100 m 

DEM. To obtain residuals for correction, they used ordinary kriging interpolation method, 

which, according to the authors, did not significantly improve the prediction model. Their 

prediction model explained approximately 73% of spatial variability of precipitation.  

Ninyerola et al. [37] developed monthly precipitation maps in the Iberian Peninsula at 

200 m spatial resolution with the use of multiple regression combined with residual 

correction method.  
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Throughout the literature the following independent variables are found significant for 

precipitation prediction:  

� Ninyerola [37] uses 5 variables to map monthly precipitation of the Iberian 

Peninsula: altitude, latitude, continentality (distance to the nearest coast), terrain 

curvature, and solar radiation. 

� Vincente-Serrano [50] studies a large number of variables (many of them they 

created by calculating the mean value within radii of 2.5, 5, 10, and 25 km) in his 

comparative study of in the middle Ebro Valley in Spain, four of which are found 

significant predictors: maximum altitude within a wedge (in the North direction), 

latitude, latitude × continentality, and altitude smoothed to 25 km. 

� Basist [3]  introduces exposure to the prevailing winds, exposure × elevation and 

slope × orientation. 

� In addition to the variables already mentioned, Agnew and Palutikof [1] use 

direction of the nearest coast, a land to sea ratio, aspect, and slope. 

2.3 Remote Sensing 

Since imagery from weather satellites such as NOAA or MODIS as well as satellites such 

as Landsat is easy accessible, Cristobal et al. [13] investigated the combination of remote 

sensing and GIS data in air temperature modeling. They were working at regional scale 

(looking at Catalonia, Spain) at various temporal resolutions (daily instantaneous and 

mean, monthly, and annual). The authors found out that the most powerful remote sensing 

predictors for air temperature modeling are land surface temperature (LST) and normalized 

difference vegetation index (NDVI). Although the authors proved the significance of 

remote sensing predictors, the overall improvement with regard to the geographical model 

was modest, only 0.1 °C. Florio et al. [19] also reported an improvement of only 0.06 °C 

when remote sensing variables are introduced in the analysis. In respect to these small 

improvements, the idea of using remote sensing in this work was rejected. 
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3 Materials 

3.1 Study Area 

The Czech Republic (CR) spreads out in the temperate climate zone of the northern 

hemisphere. It is located in the center of Europe, between approximate longitude 

coordinates 12.09 °W and 18.86 °E (~500 km), and between latitude coordinates 48.55 °S 

and 51.06 °N (~285 km). CR shares borders with Germany, Austria, Slovakia, and Poland 

and occupies the area of almost 79 000 km2. The altitudes range from 115 m to 1602 m 

above the Baltic Sea level. Official terrestrial cartography is in Krovak’s conic projection, 

however all cartography has been projected into the UTM cylindrical projection. The area 

falls into the 33N zone. [35] 

 
Figure 3.1: Study area with classified DEM and meteorological stations including two radars 

3.2 Climate Characteristics of the Czech Republic 

The natural environment of CR is characterized by a moderate, humid climate and four 

altering seasons. The complexity of the climate of the CR is related to its orography. Mean 

altitude is 430 m [47], however mean altitude obtained from the SRTM DEM is 450.7 m. 

The higher value derived from the DEM is probably caused by vegetation cover and urban 

settlement, which are reaching above the Earth’s surface. Nevertheless, variation in altitude 
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has larger influence on both climate and weather in the Czech Republic. There are 

approximately 67% of total area in altitudes lower than 500 m, 32% between 500 and 

1 000 m and only 1% higher than 1 000 m. [47] 

The climate of the Czech Republic is influenced by both the continental and the ocean 

climate. The elongated shape along the 50th latitude results in a slight increase in 

continentality towards the East.  Higher continental influence with east or north-east winds 

causes warmer, dry summers and stronger, colder winters. [47] 

Precipitation is characterized by substantial spatial and temporal variability. During the 

winter precipitation is mainly linked to passing frontal systems and pressure lows, and is 

characterized by lower intensity and longer duration. During the summer, precipitation is 

usually shorter duration and higher intensity. The spatial differences of precipitation are 

amplified by orographic effects, such as increasing precipitation total with increasing 

elevation and the effects of exposure, where wind facing sides of the mountains receive 

higher rainfalls than leeward slopes. [48] According to the Climate Atlas of Czechia,  

south-westerly and westerly winds are the most frequent. In Moravia, the most frequent 

wind direction is northwest and in some cases north-south, because it is modified by the 

terrain. [48] 

3.3 Data Sources 

Data come from several sources: Czech Hydrometeorological Institute (CHMI), United 

States Geological Survey (USGS), Environmental Systems Research Institute (ESRI), and 

ArcDATA Praha.  

3.3.1 Climatological Data 

Temperatures, precipitation, and sunshine duration are three basic climatological variables 

measured at meteorological stations. Most of those stations in the Czech Republic are 

operated by employees of the CHMI or volunteers, who provide their data to this institute. 

The CHMI belongs to the Ministry of the Environment of the Czech Republic. CHMI 

operates 209 climatological stations (including 38 professional synoptic weather stations) 

and 585 precipitation stations (situation in January 2008). See a map of the climatological 

stations at http://www.chmi.cz/meteo/ok/images/st_cz.gif , where dark 

blue squares stand for professional stations, light blue for automatic, red for basic and 

khaki green for military operated stations.  
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Figure 3.2: Meteorological stations (22 in dataset A and 132 in dataset B) and two radars 

Three datasets were obtained from CHMI: 

A)  22 meteorological stations, whose monthly and annual data for the years 1998–2009 

and one long-term 30-year period (1961–1990) are published online at 

http://www.chmi.cz/meteo/ok/infklime.html . In fig. 3.3 below there are 

23 stations because of the fact that station ‘Velke Pavlovice’ was replaced by ‘Kobyli’ in 

2009. This fact is further discussed in the subsection 3.3.1.1.  

Annual means for mean temperatures (MT) and precipitation (P) were copied into a 

spreadsheet. Tab 3.2 shows the distribution of the 22 stations with altitude. Just 22 stations 

for the area of almost 79 000km2 and for about 1500 m variation in altitude are extremely 

sparse coverage (see tab. 3.2 and fig. 3.2 for location of the 22 stations). This dataset 

comprising 22 stations is further referred to as ‘dataset A’. 

B)  135 meteorological stations with annual data for the year 2008. Although CHMI claims 

to provide data for academic purposes free of charge, after negotiations in September 2009 

only the year 2008 with 135 stations was obtained in a form of a spreadsheet. Free of 

charge, but with no guarantee. This ‘dataset B’ is therefore used for the purposes of testing, 

evaluation and accuracy assessment. 

C) Monthly radar rainfall sums for 2008. Refer to chapter 5 for detailed data description. 
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Figure 3.3: Station distribution with altitude (22 stations) 

 Table 3.5: Nr. of stations in altitude 
categories 

  

 

 

 

 

 

 

Figure 3.4 : Station distribution with altitude (132 stations) 

3.3.1.1 Missing Data 

In dataset B, there were two stations with no MT records and one station with no P record. 

Those three stations (stations H4SLAT01 Slatiny, O3HOST01 Hostalkova, and 

H3CHTU01 Chotusice, all highlighted in red in \input_data\2008.xls  on the DVD 

attached) were therefore removed and the number of stations was reduced from 135 to 132 

stations.   

Mean ALT 449 m 
Median of ALT 379 m 
Maximum ALT 1 322 m 
Nr. of stations 
higher than 500m 

5 

Nr. of stations 
higher than 1000m 

2 

Area per station 3 591 km2 

Mean ALT 453 m 
Median of ALT 401 m 
Maximum ALT 1 328 m 
Nr. of stations 
higher than 500m 

48 

Nr. of stations 
higher than 1000m 

5 

Area per station 598 km2 

Altitude 
Zone [m] 

Nr. of 
Stations 

100-300 9 

301-500 8 

501-700 1 

701-900 2 

901-1100 0 

1101-1300 1 

1301-1500 1 

Altitude 
Zone [m] 

Nr. of 
Stations 

100-300 37 

301-500 47 

501-700 30 

701-900 13 

901-1100 0 

1101-1300 2 

1301-1500 2 
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Regarding dataset A, station ‘Velke Pavlovice’ was shut down in November 2008 and a 

new station ‘Kobyli’ started observations in January 2009. In order to preserve consistency 

and to have the same number of monitoring station for each year, two MT and two P 

monthly records needed to be interpolated for the last two months of 2008 to obtain annual 

values/sums.  

MT records were interpolated using linear regression (‘TREND’ function in MS Excel) 

with ALT as the independent variable. Data table is included in Appendix 1.  

  

Figures 3.5a, b: Linear regression between MT in November and December and altitude. 

Missing P records were interpolated using multivariate linear regression in Geoda software 

with ALT, CURV and values of other months as independent variables. Data table, 

protocols, and regression equations are included in Appendix 1.  

3.3.2 DEM  

Digital Elevation Model (DEM), displayed in fig. 3.6, originates from the NASA Shuttle 

Radar Topography Mission (SRTM), launched in year 2000. The mission captured 

topographic data for 80% of the Earth’s land surface at a horizontal resolution of 

1 arc second for USA (~30 m on the equator). Horizontal resolution of SRTM global 

datasets is 3 arc seconds (~90 m along the equator). For latitudes of central Europe each 

pixel represents a rectangle of 60 × 90 m. The horizontal datum of SRTM datasets is 

WGS84 (geographic coordinate system using latitude and longitude). SRTM is vertically 

referenced to the WGS84/EGM96 geoid. [35] ‘The SRTM global datasets comprise an 

annulus between 60°N and 56°S latitude. The model is global, because GTOPO30 data 

were used to fill in latitudes beyond 60°N and 56°S, as well as void areas within the SRTM 

data. GTOPO30 is another coarser DEM of 30 arc seconds (~1 km) horizontal resolution 

developed by the USGS EROS Data Center in 1996 from a variety of data sources.’ [35] 
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Figure 3.6: SRTM DEM, each pixel contains one value representing altitude in meters. 

Although NASA has already published a ‘finished’ version of SRTM (version 2 with 

interpolated void areas), DEM used in this work is the same as in author’s previous 

work [35]. Void areas contained in SRTM version 1 were filled in by ESRI and the DEM 

used in this thesis was downloaded from ESRI Data and Maps 2006. The DEM came in 

decimal degrees in WGS84 datum. It needed to be converted to UTM coordinates in 

meters to allow some calculations such as curvature or solar radiation. The conversion 

was performed using the ‘Project Raster’ tool in ArcGIS toolbox by selecting bilinear 

interpolation. Bilinear interpolation is suitable for continuous data (such as elevation 

surfaces) and determines the new value of a cell based on a weighted distance average of 

surrounding cells [17]. The default output cell size was kept on the default value of 

61.94 m. This value was the most similar to the size of the original grid in that the 

number of cells in rows and columns of the new raster remained more or less the same. 

All calculations including interpolation are then calculated at 61 m grid. The resulting 

climate surfaces, however, are resampled to 90 m when a low pass filter is applied. 
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3.3.3 Variables Derived from DEM 

In complex terrain, climatic patterns are delineated by topographic slopes and barriers. [15] 

Several variables which appear throughout the scientific literature to be significant 

predictors of climate were derived from the DEM in ArcGIS: Altitude, slope, aspect, 

curvature, solar radiation, maximum altitude in a wedge and UTM coordinates X and Y. 

3.3.3.1 Altitude (ALT) 

Climate varies strongly with altitude. Temperature typically decreases with altitude. [15] 

While there is a known empirical relationship between temperature and elevation (6.5 °C 

per 1 km increase in elevation) [20], precipitation also generally increases with elevation, 

but the relationship is not that straightforward. [31] Altitude is an excellent statistical 

predictor, because it is sampled at greater spatial density than climate variables in a form of 

a regular grid – DEM, in our case 61 m (refer to section 3.3.2). [15] The strong relationship 

between altitude and climate has been utilized in many scientific studies, e.g.  

[1, 35, 36, 50].  

Daly et al. [14] describe the orographic effects on altitude: ‘The relationship between 

precipitation and elevation varies from one slope face to another, depending on location 

and orientation. Relationships between measured precipitation and elevation are sometimes 

strengthened when the elevation of each data point is given in terms of its height on a 

smoothed terrain.’ As suggested Daly, smoothed ALT to 1, 5, and 10 km was therefore also 

tested in the precipitation model selection process. 

3.3.3.2 Slope (SLP) 

Slope (fig. 3.7) characterizes the steepness of terrain. The ‘Slope’ tool of ArcGIS calculates 

the ‘maximum rate of change from a cell to its neighbors’. [17] The effects of slope on 

climate are often combined with aspect and are therefore explained in the next section. 
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Figure 3.7: Slope 

 

Figure 3.8: Aspect 
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3.3.3.3 Aspect (ASP) 

Aspect (fig. 3.8), the direction of slope, was calculated in ArcGIS using the corresponding 

function of the Spatial Analyst Extension. Values of 0° face to the North, values of 90° to 

the East. Slope orientations typically affect the amount of sunlight received, which directly 

influences MT. In the northern hemisphere places with southerly aspects tend to be warmer 

and drier than places with northerly aspect. [15, 17] As humid air sweeps up the slopes of a 

mountain range, the air cools, and clouds form. Eventually, rain or snow falls from the 

clouds. The rainiest places are usually those facing the wind (called windward slopes). As 

winds blow down the opposite slopes (leeward slopes), the air warms, and clouds tend to 

vanish. Leeward slopes of mountain ranges are therefore dry. [34]  

3.3.3.4 Curvature (CRV) 

Curvature (fig. 3.9) is the second derivative of the surface, in other words the slope of the 

slope. A value of 0 indicates the surface is flat. A positive curvature indicates the surface is 

upwardly convex at that pixel. Convex parts of surfaces are typically ridges, generally 

exposed and drain. A negative curvature indicates the surface is upwardly concave at that 

pixel. Concave parts of surfaces are typically channels or valleys. The values between ±0.5 

represent moderate relief, while values over ±4 represent extremely steep relief. [17] 

3.3.3.5 Solar Radiation (SOLRAD) 

SOLRAD was used by Ninyerola as a predictor in MT modeling. [36] Solar radiation 

model contains topographic information (slope and aspect) that determines amounts of 

incident solar radiation and can influence cloud formation or wind circulation. [17] 

SOLRAD can be calculated for certain year in ArcGIS with the ‘Area Solar Radiation’ tool 

(example in fig. 3.10), but the calculation is very demanding and can take several hours. 

SOLRAD further refers to the theoretical value derived from the model. 
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Figure 3.9: Curvature with hillshade effect (Z = 2) 

 

Figure 3.10: Solar Radiation in 2008 
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3.3.3.6 Maximum Altitude in Wedge (Zx) 

The right full term describing this variable should be ‘the maximum elevation in a wedge 

of given aspect and radius’ (ZxDIR&RADIUS), according to Agnew and Palutikof. They 

emphasize that this variable is very useful in areas with dominant wind directions, because 

the leeward slopes are drier and warmer than windward slopes. They include Zx variable in 

all of the models for predicting seasonal precipitation.  

In this thesis, there are 16 Zx variables. Zx in 4 directions (W, SW, NW, N, see fig. 3.11.) 

multiplied by 4 radiuses of 1, 5, 10, and 25 km. For example, ZxW25 is the maximum 

altitude in W direction within a 45° wedge with the radius of 25 km (see fig. 3.12). The 4 

directions were selected with respect to the direction of prevailing winds in the CR. 

According to the ‘wind roses map’ in the Climate Atlas of Czechia, westerly and south-

westerly winds are the most frequent. In the eastern part of the CR, the prevailing direction 

is modified by the terrain so that the northwest and in some cases north direction is often 

the most frequent. According to Daly, orographic effects influencing precipitation may 

operate at relatively large spatial scales, responding to smoothed topographic features 

rather than detailed variations in terrain, therefore the 4 radiuses were selected. Zx with 

greater radiuses of 5, 10, and 25 km were calculated on a resampled 1 km DEM in order to 

save the time needed for calculation. 

In ArcGIS, Zx is calculated using the ‘Focal Statistics’ tool, selecting the ‘wedge’ option, 

and specifying the starting and ending angle of the wedge, its radius, and ‘statistics type’ as 

‘maximum’. For SW direction for example, the starting angle would be 22° and ending 67° 

to get the wedge of 45°. This tool looks into specific direction and distance and finds the 

highest altitude of the DEM. The Zx variable can simulate orographic barriers in prevailing 

wind directions.  

 

Figure 3.11: Wedge angles with 0 to the West, angles increase counter-clockwise 

S=90°

E W=0°  

N=270° 

SW 

NW 
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Figure 3.12: Maximum altitude within 45° wedge in the W direction and 25km radius  

 

Figure 3.13: Y0 is the UTM coordinate representing latitude 
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3.3.3.7 X0, Y0 

X and Y are location variables. Variable X represents latitude and Y longitude. Both are 

UTM coordinates expressed in meters. New raster matrix needed to be created for both X 

and Y. This was done using the ‘Trend’ tool. At first, a new shapefile with 3 random points 

outside the CR borders was created, because 3 points are needed to determine a surface. In 

the attribute table, each of the three points was assigned UTM X and Y coordinates using 

the ‘Calculate Geometry’ option. Linear trend surface was then fitted through the X or Y 

values with specified output cell size matching the DEM (61.940m). In order to obtain 

reasonable coefficient numbers in calculations of regressions, minimum values of X and Y 

were subtracted from each cell using the ‘Raster Calculator’ and so were X0 (eq.3.1) and 

Y0 (eq.3.2) created.  

 X0= X – 292684.937(Xmin) (3.1) 

 Y0= Y – 5377820.5(Ymin) (3.2) 

3.3.4 DBF files 

Input data tables were obtained from CHMI and formatted in MS Excel spreadsheets 

(\input_data\2008.xls  on the DVD). The problem was that MS Excel does not 

support DBF database files which can be imported into ArcGIS. XLS files were opened in 

Open Office Calc and saved as DBF files with the Eastern European encoding (both 

Windows-1250 and ISO-8859-2) or UTF-8 but neither of them worked correctly in 

ArcGIS. Displaying the imported DBF file as a point shapefile in ArcGIS is done with the 

‘Display XY Data’ function, by selecting the appropriate X coordinate (longitude), Y 

coordinate (latitude) and the geographical datum WGS84. Point shapefiles with attribute 

tables filled in with independent variables information are also included on the DVD in the 

geodatabase.  

3.3.5 ArcČR 500 v. 2.0a 

The dataset ArcČR 500 version 2.0a was obtained from ArcData Praha, s.r.o. free of charge 

for academic purposes in 2007 for the author’s Bachelor Thesis. Shapefiles containing 

administrative regions of the Czech Republic, rivers and streams, water bodies, and all 

cities were used to extend the spatial context of resulting climate maps. The dataset came 

in WGS84 and was also converted to UTM Zone 33N. 
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4 Methods  

Accurate climatological data are collected at meteorological stations, which are discrete point 

locations in space. Values at any other point must be derived from neighboring stations or from 

relationships with other variables. [31] The method of spreading discrete measurements over a 

continuous surface represented by a regularly spaced grid is called spatial interpolation.  

Methods of mapping climate from point data fall into two categories: human expertise and 

statistical. The first group is based on human experience and knowledge and involves manual 

preparation of climate maps often related to topographic analysis. Statistical methods use a 

numerical function, calculated or prescribed, to spread irregularly spaced point data to a 

regularly spaced grid. [15] Various statistical methods have been developed to predict the 

spatial distribution of climate variables: 

4.1 Global Methods 

Global methods include all sampling points, in this case all weather stations, in calculations. 

Global methods use external information, e.g. topographic data, to create dependence models 

between the external (independent) variable and the modeled (dependent) variable, which is 

typically done by a polynomial function or by the means of simple or multiple regression 

models. The underlying hypothesis is that climate at any location is influenced by the 

environmental attributes of the surroundings. The geographical variables of the weather station 

(typically coordinates - latitude and longitude, distance to water bodies) or topographic 

variables (e.g. elevation, aspect, and slope) are used as independent variables. The value at an 

unsampled point is predicted by the following function [50]:  

 ���� � �� � ���� � ���� �	� ���� (4.1) 

where z is the predicted value at point x, β0-βn are the regression coefficient and P1-Pn

 

are the 

values of independent variables at point x. Simple linear regression (with one independent 

variable) fits a regression line (example fig. 3.5 or fig. 5.9). Multiple regression determines a 

regression surface using least-square estimation. Global methods are inexact interpolators in 

that the values predicted do not coincide with the real observations of weather stations.  

The relationships between climatic and independent geographic or topographic variables have 

been extensively studied in the scientific literature. Linear regression was used in the following 

works [22, 35] , and multiple regression was used in [1, 20, 36]. All of the above studies reveal 

elevation as the most important predictor in the distribution of weather data.  
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4.2 Local Methods 

In contrast to global methods, local interpolators only use the data from the nearest sampling 

points (weather stations). First, a number of weather stations are selected. Prediction at a given 

point is done by a mathematical function which takes data from the selected stations. Local 

interpolators are exact methods, as predictions coincide with the measured values. [26] Local 

interpolators such as inverse distance weighting (IDW), Thiessen polygons or thin-plate 

splines [25, 26] have also been used for climate mapping, but are nowadays used as additional 

interpolators in combination with a geostatistical or global interpolator, as described in sections 

2.1.1 and 4.4.  

IDW is a simple statistical method based on the assumption that the value at unsampled point 

z(x) is a distance weighted average of the climatic values at selected sampling points z(x1), 
z(x2),… z(xn). The distance dij is the weighting factor, because climate values are in general 

more alike between closer points than between distant points. [50] The IDW formula looks as 

following: 

 ���� � ∑ ����� � �������	�∑ �����
�
�	�

 (4.2) 

where r is the power parameter (positive, real number, r = 2 by default in ArcGIS).         The 

choice of power parameter can significantly affect the interpolation results. As r increases, 

‘IDW approaches the nearest neighbor interpolation method where the interpolated value 

simply takes on the value of the closest sample point’, says Collins. [12] In other words, the r 

exponent provides the possibility for the user to control the significance of known points on the 

interpolated values. [18] 

The next local interpolation method is splines. Splines algorithms are mathematically complex, 

but are standard in current GIS. For each z(x), a new function is created according to the 

number of sampling points available in radius r. The predicted value z(x) is determined by two 

terms [50]:  

 ���� � ��� � ∑ �� � �������	� , (4.3) 

where T(x) is a polynomial smoothing term and the sum contains a group of radial functions. 

Splines assume smoothness of variation. Splines have the advantage of creating contour lines 

which are visually appealing, but may mask uncertainty present in the data. [12] 
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Thiessen polygons, also called nearest neighbors, simply take the value of the nearest point 

where climatic information is available. The result is a polygon network with abrupt spatial 

discontinuities in the values when passing from one polygon to the other. [50]. Therefore, it 

is not an appropriate interpolation for variables with gradual spatial variation, such as 

climatological variables which are the subject of this thesis. [5] 

4.3 Geostatistical Methods 

Kriging is a group of geostatistical methods which assume that the spatial variation of 

continuous climatic variable is too irregular to be modeled by a mathematical function, so 

prediction by a probabilistic surface is proposed instead. [50] The climatic value z at point 

x can be expressed by the following formula [5]: 

 ���� � ���� � �
��� � �

 (4.4) 

where m(x) is the drift component which represents the structural variation of the climatic 

variable, ε’(x) are the residuals, the difference between the drift and the original sampling 

data values, while ε”(x) are spatially independent residuals. Kriging methods are based on 

a weighted average of the data available in the n neighboring stations. The weights are 

chosen so that the calculation is not biased and variance is minimal. [50] This is done 

through a semivariogram model that best fits the data (see fig. 6.3). [14] Examples of 

works where kriging is used to interpolate residuals are [1, 6, 46]. 

4.4 Combined Methods 

Global methods are not exact interpolators, since the predicted value does not equal the 

value recorded at the station. The known error or difference between the two values is 

called a residual [50]:  

 residual = observed data – predicted data (4.5) 

Combined methods generally use a global method for prediction and a local method for 

interpolation of residuals. The later method is in fact a correction used to obtain exact 

climatic data at the measured locations [50]:    

 observed data = predicted data + residual interpolation (4.6) 

The correction interpolation increases the precision because it accounts for some of the 

remaining spatial variation hidden in the residuals. Combined methods were successfully 

applied in the following studies [1, 38, 50]. 
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4.4.1 Multiple Regression with Residual Correction 

The combination of statistical (multivariate regression) and spatial interpolation (IDW, 

spline, or kriging) has been demonstrated to be effective in MT and P modeling in the 

scientific literature [1, 36-38, 50]. The main purpose of this work is to investigate the role of 

multiple regression analysis with the residual correction method in climate modeling in CR. 

According to Burrough and McDonnell [5], this method is scientifically interesting because, 

in addition to the interpolation process, it gives information about the relationship between 

the geographic reality of the land and climate. Fig. 4.2 illustrates the whole process: 

Stage I: Developing the regression model 

 

 
 
 
 
 
Stage II: Estimating and 

refining the climate surface 

 
 
 
 
 
 
 

Figure 4.1: Two-stage methodology for constructing baseline climatologies [1] 

The input data has following characteristics: topographical data as independent variables are in 

the form of rasters while climatological data as dependent variables are point features. 

Multivariate regression models are calculated in Geoda software. Backward stepwise approach 

and t-statistics is used for choosing significant independent variables. Backward stepwise 

selection begins with the examination of the combined effect of all of the independent 

variables on the dependent variable. One by one, independent variables (usually starting with 

the weakest predictor) are removed based on some outset criteria (t-statistics), and a new 

analysis is performed. [30] One should avoid the possibility of any of the variables being a 

linear combination of another variable. The goal of the backward stepwise approach is to find 

the combination of independent variables when adj-R2 is maximized. On the other hand, since 

there are only 22 observations (dataset A), 4 to 5 independent variables will be the maximum, 

because the more variables are included, the lower is the degree of freedom of the model.  

Terrain variables Location variables Climate variables 

Regression model 

 
Predicted surface 

Interpolate 
residuals using 

IDW 

add residuals 
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One final model is then selected for MT and one for P. Putting in the regression 

coefficients (βn) into ‘Raster Calculator’, prediction maps called ‘potential maps’ [36] are 

created. Predicted values were extracted from prediction maps at weather station locations, 

then subtracted from observed values and so were residual values obtained for each station. 

Residual values are interpolated into a raster using IDW interpolation in ‘Spatial Analyst’. 

Residual surface is then pixel by pixel added to the potential maps using ‘Raster 

Calculator’. Ninyerola calls these residual surfaces ‘corrector maps’ [36]. ‘These corrector 

maps will not be uniform, but they will show maximum variability in the more 

unpredictable areas, and minimum variability in the predictable sites. In this sense, 

corrector maps can be seen as anomaly maps, of great interest to reveal the singularities of 

the climate at the local scale. The most unpredictable areas are usually correlated with 

rugged zones.’ states Ninyerola.  

4.4.2 R2 and Adjusted R2 

How well the model predicts is described by the correlation coefficient R2, also called 

coefficient of determination. It determines the goodness of fit of the model. In the case of 

linear regression this would be how well the line approximates the points (see fig. 3.4 or 

5.9 for illustration). In case of multivariate regression, R2 is calculated using the 

determinants |R| and |Ryy| of the correlation matrix R. |R| is the determinant of the whole 

matrix, while |Ryy| is the determinant of the matrix without the first row and column. [24] 

R� � 1 � |�|
����� 

4.4.3 Fisher’s F-test 

Fisher’s F-test can test the overall effectiveness of the regression model, but it does not 

advise whether all of the independent variables are significant, if more variables should be 

included or some excluded from the analysis. [24] F-test is calculated as the ratio of two 

variances. In Geoda, F-statistic tests the null hypothesis that all regression coefficients are 

jointly 0 and gives the associated probability. F-test will typically reject the null hypothesis 

and is therefore not that useful. [2] 
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4.4.4 Student’s t-test 

Student’s t-test in case of multivariate regression provides a measure of significance of an 

independent variable. It helps to analyze the within-group variation and to decide which 

variable are to be excluded from the analysis. The higher the t-statistics value, the more 

significant is the variable and vice versa. For the quality of the model it is better to include 

a variable which is not significant (is useless) rather than not including a variable which is 

significant. [24] 

4.4.5 Protocols of Regression from Geoda 

Geoda software developed at the Arizona State University, USA, is used as the primary 

software for calculation of multivariate regression. Geoda reads shapefiles as input. 

Geoda’s ‘Regress’ tool offers the option to include the full covariance matrix of the 

regression coefficient estimates in the output protocol, and the predicted values and 

residuals for each observation. The output protocols (in appendix 1 and on the DVD in 

\regression_protocols\  folder) contain several statistical characteristics of both 

dependent and independent variables. RMSE (see table 7.1) is in Geoda referred to as S.E. 

of regression (standard error of regression). The explanation of the various statistical 

measures based on [2] is given below:  

� The first few lines characterize the dependent variable (by providing the mean 

value and standard deviation) and the model (number of observations, number of 

independent variables and degrees of freedom).  

� R2 and adj-R2 provide the measure of the goodness of fit of the model. 

� F-statistics and probability of F-statistics can tell whether the model is not effective 

more than whether it is. 

� The sum of squared residual enters the calculation of Sigma-square (which is a 

standard error estimate or RMSE in tab. 7.1) and Sigma-square ML. The last one in 

the column is S.E. of regression ML (standard error estimate or RMSEML in eq. 

X+1). The ML index means that the statistical measure does not compensate for the 

loss of freedom. 

� The area between dashed lines displays the independent variables and their 

significance characterized by the t-statistics (Student’s t-test) and its probability.  
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� The three statistical measures on the right (Log likelihood, Akaike Information 

Criterion (AIC) and Schwarz Criterion (SC) are used for comparisons across the 

various spatial (and non-spatial) regression models. The higher (or less negative) 

the      log-likelihood, the better the fit. For the information criteria, the direction is 

opposite, and the lower the measure, the better the fit.  

� Below the dashed line there is the multicollinearity condition number. This 

diagnostic suggests problems with the stability of the regression results. Values 

over 30 are in general problematic.  

� The Jarque-Bera test is used to examine the normality of the distribution of the errors. 

The low probability of the test indicates non-normal distribution of the error term.  

4.5 Limitations 

The major limitation of this work is the lack of high spatial density of meteorological 

stations, as discussed in Data Sources in section 3.3.1.  

The terrain variables are all derived from a DEM which may contain errors. The accuracy 

of the DEM is further analyzed in section 6. 

4.6 Delimitations 

The author selects to study only two basic climate variables – mean temperatures (MT) and 

precipitation (P).  
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5 Using Radar-derived Rainfall in Precipitation 
Modeling in the Czech Republic 

This chapter presents a separate study about using radar data in annual rainfall modeling in 

CR. This analysis was done prior to the whole thesis, therefore 21 meteorological stations 

are used (missing data were not filled) and latitude (LAT) is introduced as an independent 

variable instead of Y0.  

5.1 Introduction 

Precipitation, as one of the basic climatic variables, is essential for life, however, it can 

also transform into destructive power. It is used as an input in various models not only in 

hydrologic modeling, e.g. flood prediction, but also in agriculture applications for 

estimating yields, land management, forestry or in atmospheric simulation models.  

Rainfall data are traditionally collected at meteorological stations, which are discrete point 

locations in space. These measurements are called rain gauges. Rain gauges observations, 

although represent only points, are still considered as close to true rainfall as we can get at 

present state of art technologies. [27] Values at any other point must be derived from 

neighboring stations or can be remotely sensed, e.g. by ground-based radar. Weather radar 

has advantages in contrast to other methods. First, it encompasses large spatial domains of 

up to 260 km. Second, radar images are acquired at fine temporal resolution, for example 

every 10 min. Third, radar can ‘see’ much larger atmospheric space than rain gauges 

located on the ground. Radar can detect the areal distribution of precipitation at more 

detailed spatial scale than rain gauge network and therefore, the final rain field pattern 

should be determined by radar as recommended by Krajewski [27]. Conversely, 

precipitation obtained only from radar data cannot be directly used because radar 

measurements are affected by various types of errors and the transformation of measured 

radar reflectivity into rain rates is far from accurate. [27, 44] The solution presented in the 

literature e.g. [27, 42, 43] include merging radar and rain gauges estimates. 

Krajewski [27] presents a brief discussion of the use of rain gauges in radar-rainfall 

estimation and concludes that both radar and rain gauge networks are equally important. 

Sokol and Bliznak [44] study heavy short term precipitation of the Czech Republic at 1h 

temporal and 1 km spatial resolution by merging radar and rain gauge precipitation [43]. 

Sokol and Bliznak [2] focus on the precipitation-altitude relationship and conclude that the 
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relationship depends on the accumulation period. 1-hour high rain rates are without 

apparent dependence on altitude, while longer 2 and 3 hours low and high rain rates are 

impacted by altitude. 6-hour precipitation events reveal influence of the mountains, where 

precipitation occurs at larger scale.  

The focus of this study is therefore to investigate the use of radar data in modeling annual 

precipitation over the area of the Czech Republic (CR).  

5.1.1 Aims and Objectives 

The broad aim of this study is to explore the use of radar data in precipitation modeling. 

The secondary objective is to test the influence of following topographic, locational and 

atmospheric variables on residual errors: altitude (ALT), longitude (E_lon), latitude 

(N_lat), aspect (ASP), slope (SLP), curvature (CRV), distance from the radar antenna 

(DIST), aspect perpendicular to the radar beam referred to as directional difference (DIF), 

mean temperature (MT), and solar radiation (SOLRAD). Residual errors are calculated as 

the difference between radar-predicted rainfall and rain gauges observations, which are 

considered true. If some factors influencing residual errors are found significant, this 

would mean radar errors are not random and therefore can be removed by calibration. The 

variables DIST, ALT and DIF are expected to have the largest influence on radar 

measurement accuracy amongst other studied variables.  

5.2 Theoretical Framework 

Rain gauge observations are typically used in calibration and validation of radar derived 

estimates. The process can be summarized in three steps: Firstly, parameters of the basic 

relationship between radar-measured reflectivity and rainfall rate (Z-R relationship) are 

estimated. The second stage involves adjustment of the mean field bias, which is the ratio 

of the true areally averaged rainfall (approximated by rain gauge observations) to the 

corresponding radar-rainfall. The third stage may use rain gauges to locally adjust       

radar-rainfall patterns by merging the two sets of rainfall estimates according to some 

criterion, e.g. mean error variance. [27] 

Radar images can be imported into a Geographic Information System (GIS), which 

provides a standard means to display, overlay, and combine the data with other layers, e.g. 

topographic or climatic, for analysis. [21] 
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5.2.1 Methodology 

In order to examine the use of radar rainfall data for precipitation mapping, regression 

analysis is applied to determine the relationship between rain gauges and radar estimates. 

Residual analysis using regression approach is then applied to study factors influencing 

residuals, which can provide insight into radar measurement errors. Given the data provided 

by the Czech Hydrometeorological Institute (CHMI), the analysis is firstly performed for 

annual estimates in the year 2008 with 134 stations and secondly at a monthly scale using 

gauge data from only 21 stations. 

5.2.2 Data Sources 

Precipitation data were obtained from the CHMI for year 2008 in two forms:  

1) Monthly radar sums  

2) Rain gauges at two temporal scales (monthly and annual) with a different number of 
stations (21 and 134 respectively). 

5.2.2.1 Radar Data 

The Czech radar network (CZRAD), operated by the CHMI, consists of two polarization C-

band Doppler radars. Optimal location of the radars with respect to topography causes 

reflectivity to be significantly influenced by terrain blockage of radar echo only in small 

areas of the CR. [44] More information about the radar network and instuments’ 

specification is detailed in [9].  

 
Figure 5.1: Map downloaded from http://www.chmi.cz/meteo/rad/eindex.html showing the 

maximum overage of the CHMI weather radars (circles) and the effective coverage for P estimation.  
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Monthly raw radar rainfall sums (already combined from both radars) for the year 2008 

were provided by the CHMI in two dimensional RPD format. The data are stored in 

Cartesian coordinates. The RPD file consists of two parts: header and binary data, which 

can be decoded in a Linux system environment using simple commands:  

dd if=file.rpd ibs=512 count=1 | tr -d '\000' >head er 
dd if=file.rpd ibs=512 skip=1 | gzip –d >image 

In order to import the image into a raster ArcGIS compatible format, the image file was 

renamed to image.BIL  and new header image.HDR  needed to be created (based on the 

information provided in the original header):  

BYTEORDER I 

LAYOUT BIP 

NROWS  528 

NCOLS  728 

NBANDS 1 

NBITS  16 

NODATA      -9999 

XDIM  1000.0 

YDIM  1000.0 

Using the ‘Raster to Other Format’ conversion tool 12 images were imported into ArcMap 

as GRIDs. Each image was then assigned gnomonic projection using ‘Define Projection‘ 

tool. The gnomonic projection is defined by CHMI [39] by the following parameters:   

<pacz23> # ID of projection  
# combined information with 1x1km resolution (x_0, y_0 are in [m]) 
proj=gnom lat_0=50.008 lon_0=14.447 a=6379000. 
x_0=301500 y_0=-217500 es=0. no_defs <> 
x_res = 728 # nr. of colls 
y_res = 528 # nr. of rows  
pix_res = 1.0 # size of pixel in the centre of proj ected image in [km]   

Radar sum rasters were then transformed from gnomonic to UTM projection (based on 

WGS84 ellipsoid, zone 33N) in order to be able to ‘extract values to points’ from radar 

rasters. The horizontal spatial resolution is 1×1 km.
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Monthly Radar Sums of Precipitaion in 2008 
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Set of figures 5.2 above: Radar sums by months for 2008 

Figure 5.3 below: Zoom in to the area where radar beam casts a ‘shadow’ caused probably by different 
signal of similar frequency 
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5.2.2.2 Specific Independent Variables 

Apart from variables described in section 3.3.3, two new variables are introduced. 

� DIST (Fig. 5.4) 

Distance to the Radar Antennas was calculated as the shortest Euclidean distance, using the 

function corresponding name. 

 
Figure 5.4: Distance 

� DIF, DIF5 and DIF10 (Figures 5.6–5.8) 

Directional difference is derived from ASP using GIS techniques. Difference between 

direction to the radar antenna (DIR) and aspect (ASP) is calculated as  

 DIF= | cos(ASP-DIR) | (5.1) 
 

  



 

Figure 5.5: Chart explaining the l 

When ASP-DIR = ±90 or 

ASP-DIR = 0 or ±180, the aspect is facing the same direction as the radar beam. By 

averaging neighboring pixels two additional variables were 

which represent directional difference for area of 5 and 10
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Figure 5.5: Chart explaining the l meaning of the variable DIF 

 ±270, the aspect is perpendicular to the radar beam. When 

, the aspect is facing the same direction as the radar beam. By 

averaging neighboring pixels two additional variables were created: DIF5 and DIF10, 

which represent directional difference for area of 5 and 10 km, respectively.

Figure 5.6: Direction 

, the aspect is perpendicular to the radar beam. When    

, the aspect is facing the same direction as the radar beam. By 

created: DIF5 and DIF10, 

km, respectively. 
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Figure 5.7: Directional Diference 

 

Figure 5.8: Directional Difference smoothed to 10km resolution 
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5.2.3 Atmospheric Data 

Since mean air temperature (MT) can be interpolated over large areas with sufficient 

accuracy (standard deviation less than 0.1 °C) [35], it could also be used as an independent 

variable in rainfall modeling. However, it should not be used in models together with 

altitude with which it is highly correlated.  

Meteorological stations recording rain gauges do not only record MT, but also sunshine 

duration (SD). SD, in addition to solar radiation (SOLRAD) is also included in the studied 

variables. While SD is a real measured variable, SOLRAD is a theoretical variable because 

it is derived from DEM. SOLRAD is calculated using ASP, SLP, and solar angle and does 

not include actual information about cloudiness.  

5.3 Analysis 

Since the aim of this study is to model precipitation by using radar data, gauge 

measurements enter the regression analysis as dependent variable and rainfall sums as 

independent variable. The analysis is carried out with two datasets:  

1) annual 2008 data of 134 monitoring stations 

2) monthly data for the same year of only 21 available stations. 

5.3.1 Regression Analysis 

Using MS Excel or Geoda software, simple linear regression model was fitted between 

radar (independent) and rain gauge data (dependent) variables as displayed in scatter plots 

in figures 12–14. Geoda software creates a protocol of the regression calculation with 

various statistical measures and includes the residuals between the predicted and the real 

gauge data, refer to appendix 2.  

The scatter plot in fig. 5.9 reveals some relationship between rain gauges and radar 

measurements. The slope coefficient of 1.74 indicates that radar underestimates the gauge 

rainfalls by nearly twofold. When forcing the linear curve to intercept the [0,0] point, it 

increases to 1.94. The relationship is slightly linear, but not very strong. The correlation 

coefficient for annual data R2 = 0.18 is low, which means that there is low dependence 

between gauge and radar precipitation estimates. F-statistics reaches 29 with the 

probability of 2.7×10-7 (refer to appendix 2) which indicates that the relationship is true 

and is not the consequence of chance.  
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Figure 5.9: Gauge precipitation measurements of 134 meteorological stations plotted against annual radar 
rainfall sums over the same location. 

One would expect a stronger relationship between the radar and the gauge data since both 

methods measure the same variable – precipitation. Radar rainfall integrated in time to 

represent rainfall accumulations are typically adjusted to rain gauge-based areal average of 

the corresponding rainfall. [27] The regression function implies that the radar data are raw 

and were probably not calibrated with the gauge measurements, otherwise one would see a 

random noise pattern in the plot, slope coefficient approximating 1 and the regression line 

intercepting close to the [0,0] point on the axis. The slope coefficient is almost 2, 

indicating that radar generally underestimates rainfall by almost a half.  

If stations with residuals higher than 300mm (arbitrary selected threshold) were removed, 

the R2 would increase from 0.18 to 0.41 (refer to fig. 5.10 below).  

 

Figure 5.10: Gauge precipitation measurements of 122 meteorological stations (12 stations with residuals 
over 300mm were removed) plotted against annual radar rainfall sums. 
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The scatter plot in fig. 5.11 represents the monthly dataset. The slope coefficient of 1.4 is 

lower than 1.7 in annual data. It is pulled down by 2 stations with the highest residuals 

lying in the highest altitudes (‘Churanov’ and ‘Lysa Hora’). However, the correlation 

(R2 = 0.50) is better than in the annual case, where there is more stations situated in 

altitudes over 1000 m above the sea level. 

 

Figure 5.11: Gauge precipitation measurements of 21 meteorological stations plotted against montly radar 
rainfall sums over the same location. 

5.3.2 Residual Analysis 

The following analysis seeks to determine if long-term annual and monthly 

precipitation can be predicted and modeled using radar rainfall. The residual analysis is 

based on the assumption that rain gauge data are true [27] and not biased, while annual 

radar sums of rainfall are not accurate. Further analysis focuses on the source and 

nature of errors of radar measurement by looking at the residuals of the two regression 

models, monthly and annual, depicted in figures 12 and 14. The analysis is carried out 

primarily on the annual dataset with 134 gauge stations which is considered more 

representative than monthly dataset with only 21 stations. The monthly scatterplots are 

included for comparison and confirmation of the annual results. Radar-derived 

precipitation generally underestimates gauge measurements and the underestimation 

increases with increasing distance from the radar. [43] 

5.3.2.1 Residuals 

Residuals (RES) are calculated as:  

 RES = PRED – P (5.1) 
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(annual) are gauge values. When the residual value is positive, the model is over-

predicting the actual precipitation. If the residual is negative, the model based on radar 

rainfall is under-predicting the real value of precipitation. Residuals for all stations are 

shown in input data table, Appendix B. The highest residual values overreaching the 

arbitrary selected threshold of ±300mm were highlighted in red color. Note that these 

stations are situated in high altitudes where there is generally greater precipitation than 

in lower altitudes and where radar measurement is less accurate, primarily due to the 

radar beam being obstructed by mountain ridges.  

All of the residual values resulting from linear regression (figures 5.9 and 5.11) are 

negative. One exception is the station ‘Hradec Kralove’, where the residual value is 

positive, which means the model is over-predicting the real value. Meteorological 

station Hradec Kralove lies in a ‘radar beam shadow’ behind an obstacle for last three 

months of the year 2008 (refer to fig. 5.3). Therefore, this station was excluded from 

the analysis of monthly datasets. Stations ‘Destne v Orl.H.’ and ‘Javornik’ from the 

annual dataset lying in the same ‘radar beam shadow’ do not show any outlying 

residuals. 

5.3.2.2 Residual Plots 

Residuals (refer to eq. 5.1) were plotted against several variables. A linear (represented 

by solid line) as well as second order polynomial (dashed line) regression curve was 

fitted through the data to determine any underlying relationships and dependencies 

between residuals and other variables. This method helps to explain the variation in 

residuals and reveals factors which affect radar measurements. 

The following text contains pairs of scatter plots, representing one variable plotted 

against annual (on the left hand side) and monthly (on the right) residuals. The annual 

residual plots are further analyzed in the text, while the monthly plots are included as 

further reference for comparison and confirmation of annual results. This is because the 

annual dataset containing 134 stations is considered more representative.  
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Figures 5.12a and b: Altitude vs. annual and monthly residuals 

It is generally accepted that altitude significantly influences the spatial distribution of 

precipitation. The main reason for increasing precipitation with altitude is the orographic 

lift, which occurs on windward slopes, where the arising air mass expands and cools 

adiabatically which results in increasing relative humidity, creating clouds and 

precipitation. [44] 

As shown in fig. 5.12a, altitude has a strong influence on residuals. Altitude itself can 

already explain 51% of variation in residuals. The lowest residuals around 0 are in altitudes 

between 400 m and 500 m. Altitudes lower than 400 m show generally positive residual 

values, while most of the altitudes above 500−m have negative residual values. The highest 

residuals appear at the highest altitudes.  

 

Figures 5.13a and b: Mean Temperature vs. annual and monthly residuals 

Fig. 5.13a reveals a relatively strong linear relationship (R2 = 0.40) between mean annual 

temperature and residuals. Higher residual values emerge at colder stations, which again, 

lie in higher altitudes. Mean temperature and altitude are highly correlated variables 

(R2 = 0.90 and higher) [35] and therefore its inclusion in regression models together with 
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altitude should be considered. However, only one of the two variables should be used as 

predictor in one model. The monthly dataset on the other hand shows no correlation of 

residuals and monthly mean temperature. This is not a direct effect of temperature but is 

caused by altitude. There is a high correlation with altitude for annual averages and a much 

weaker relationship of temperature and altitude for monthly averages, because one can get 

high temperatures at high altitudes during summer. 

   

Figures 5.14a and b: Sunshine Duration and solar radiation vs. annual residuals 

Figures 5.14a and b are both from the annual dataset and show solar influence on residuals. 

It is interesting to note that the trend is negative in the case of solar radiation and positive 

in the case of sunshine duration. Sunshine duration is a physical measure monitored at the 

meteorological stations (takes into account cloud cover), while solar radiation is a 

theoretical measure derived from DEM and calculated using ArcGIS. Solar radiation 

reveals some linear trend which considering the R2 of 0.24 could explain ¼ of variation of 

residuals. Solar radiation contains information about slope and aspect from the DEM. Both 

slope and aspect can affect radar measurements as shown below in figures 5.15 and 5.16. 

  

Figures 5.15a and b: Slope  vs. annual and monthly  residuals 
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Regarding slope in fig. 5.15a, the majority of stations lie on flat surface of slope 5° or 

lower. Generally speaking, the higher the slope, the higher the residuals (negative, which 

means radar is under-predicting).  

  

Figures 5.16a and b: Distance from the radar antenna vs. annual and monthly residuals 

Fig. 5.16a focuses on the distance from the radar antenna. The relationship between the 

distance and residuals is rather quadratic than linear. This can be explained by the stations 

situated too close or too far from the antenna resulting in higher residuals. Highest 

residuals (also negative) are associated with those stations farthest away from the radar 

antenna. Lowest residual values are at distances ranging from 50 to 100 km.  

  

Figures 5.17a and b:Latitude vs. annual and monthly residuals 

Latitude in fig. 5.17a does not reveal any strong relationship with residuals, but the outliers 

lie in latitudes above 51°, which is around the northern border, where mountains spread 

out.  
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Figures 5.18a and b: Directional Difference smoothed to 10km vs. annual and monthly residuals 

Directional difference (DIF) beteween the direction towards the radar antenna and aspect is 

displayed in fig. 21a. In other words, this variable describes the horizontal angle of the 

radar beam and the reflectance area. Higher correlation, but still very low (R2 = 0.048), 

between directional difference and residuals was found for DIF smoothed to 10 km 

compared to 1 km or 90 m. 

Longitude in fig. 5.19a nor curvature in fig. 5.20a nor aspect in fig. 5.21a does not have 

any significant influence on residuals. In the case of curvature, residual values around 0 are 

spread out around curvature of 0, where the terrain is flat. 

  

Figures 5.19a and b: Longitude vs. annual and monthly residuals 
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Figures 5.20a and b: Curvature vs. annual and monthly residuals 

  

Figures 5.21a and b: Aspect vs. annual and monthly residuals 

  

Figures 5.2a and b: Residuals vs. months and seasons 
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Neither months nor 4 seasons show significant correlation with residuals, concluding that 

there is no seasonal variation in radar-rainfall prediction. 

5.4 Findings 

The correlation coefficients (R2) obtained through the annual residual plots show how 

certain factors influence the residuals. Monthly residuals from a small number of stations 

are less representative and are therefore included mainly for comparison with annual 

residuals. Tab. 3 summarizes the annual R2 values which are sorted in descending order 

according to the linear regression fit. ‘*’ in tab. 3 means that SD08 was excluded from the 

analysis, because not all of the gauge stations measure sunshine duration (SD08). An 

additional reason for this is that sunshine duration would have to be interpolated over the 

whole area with certain precision in order to be used as areal prediction factor.  

Table 5.2: Regression coefficients between annual residuals and various factors 

R2 
linear polynomial 

ALTITUDE 0.514 0.537 
MT08 0.404 0.474 
*SD08 0.357 0.447 
SOLARRAD 0.243 0.246 
SLOPE 0.180 0.232 
DIST 0.156 0.338 
N_LAT 0.107 0.155 
DIRDIFF10 0.048 0.051 
DIRDIFF5 0.041 0.043 
DIRDIFF 0.019 0.041 
CURVAT 0.002 0.013 
E_LON 0.000 0.032 
ASPECT 0.000 0.036 

Factors with the highest R2 values have the highest influence on residuals and hence can 

bias radar measurements. Multiple regression analysis was performed with the factors in 

table 5.2 lying above the dashed line (the line was drawn arbitrary). Significant factors 

were identified using backward stepwise approach, which is documented in table A-2.1 in 

appendix 2. 

Significant factors are found ALT, N_LAT and DIST. Relationship between distance and 

residuals is better described by a polynomial relationship rather than linear as shown in 

fig. 19a. The polynomial relationship is also underlined in tab. 5.2 where the R2 reaches the 
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value of 0.338. Distance squared (DIST2) was therefore introduced to the regression model 

to simulate 2nd order polynomial (quadratic) fit. The results are stronger than in the linear 

case, since R2 increases from 0.66 to 0.74 (see tables A-2.1 and 2.2. in appendix 2) 

The three factors included in the multivariate polynomial regression model can explain 

74% of variance of residuals. This finding is important because it means that the residuals 

are predictable from topographic and locational variables and not a consequence of random 

variation.  

5.4.1 Discussion 

The findings above are important because it means that the residuals are predictable from 

topographic and locational variables and are not only a consequence of random variation. 

The regression analysis was performed including the station suggested for exclusion in 

section 5.3.2.1. The exclusion of the 3 stations mentioned earlier would lead to slightly 

better fittings of the regression curves and slightly higher regression coefficients. Because 

such an improvement would not be significant, the three stations were not left out from the 

analysis. 

Second, stations with residuals greater than ±300 mm per annum should not be excluded 

from this analysis, because all of these stations lie in high altitudes and represent the 

mountainous regions where precipitation is hard to model and always under-predicted by 

the radar. This can be caused by the mountains acting as natural obstacles blocking the 

radar beam. 

Using radar data in precipitation modeling can be easier in low to mid altitudes, as evident 

in figures 5.9–5.12, but it can be difficult, if not impossible, in mountainous regions.  

Findings are the result of analyzing residuals between radar and gauge rainfall sums at 

annual and monthly scale. Looking at finer temporal resolution could introduce some other 

topographic, locational or atmospheric variables.  
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5.5 Significance 

Findings confirm the hypothesis that radar measurement errors are not only a cause of 

random variation but are significantly affected by the following topographic and locational 

variables: altitude, distance from the radar beam and less significantly by latitude. 

Including these three geographic variables in radar measurements in some form of location 

specific calibration could improve the radars accuracy and remove up to 74% variance of 

residual errors. 

5.5.1 Suggestions for Future 

Having monthly rain gauge data for all of the meteorological stations in the Czech 

Republic one could increase the number of statistical samples for analysis from 134 to  

 12(months) x 134(stations)=1608(samples). (5.2) 

Having wind direction observations it would be possible to develop and test new 

interactive variables such as the product of slope and orientation (orientation of the 

prevailing winds at some specific height) or exposure of a slope with regard to wind 

directions.  
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6 Analysis 

The magnitude of the multivariate regression analysis is in selecting the best fitting model 

by choosing significant independent variables. For the residual correction, an appropriate 

local interpolation technique needs to be selected. 

6.1 Linear Relationships 

The first reasonable step in multivariate regression analysis is finding linear relationships 

by looking at scatter plots and correlation coefficients of the independent variables with the 

climate variables. The relationship between climate and independent variables is expressed 

by the correlation coefficient R2. Tab. 6.1 shows the most significant linear predictors 

followed by scatter plots with linear regression equations with R2 produced in MS Excel. 

The dashed line in tab. 6.1 and 6.2 separates the significant from non-significant variables 

based on the probability of F-statistics. 

Table 6.1: Correlations of various independent variables with MT (dataset A, 132 observations) 

MT 2008 

Variable R2 F prob F 
ALT 0.898 1146.7 0.00 
SOLRAD 0.470 115.5 0.00 
SLP 0.230 37.8 0.00 
Y 0.017 2.3 0.13 
X 0.015 2.0 0.16 
CRV 0.013 1.7 0.19 

ASP 0.000 0.3 0.85 

The best predictor of MT is undoubtedly altitude (see fig. 6.1, tab. 6.1). Aspect on the other 

hand shows no correlation with MT, although it was expected to be a useful predictor. 

Notice the cloud of points in slope as well as in curvature scatter plots in fig. 6.1 and 6.2. 

Neither of them should be used as predictors, since the slope of the curve (or shape in case 

of quadratic regression) is determined by only a few outlying points.  
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Set of figures 6.1: Scatter plots of various independent variables with MT (dataset A, 132 observations) 
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Table 6.2: Correlations of various independent variables with P (dataset A, 132 observations) 

P 2008 

R2 F prob F 
variable linear poly 2nd linear 

ZxN5 0.622 0.698 214 0.00 
ALT5km 0.578 0.627 178 0.00 
ZxW25 0.549 0.628 158 0.00 
ALT1km 0.539 0.592 152 0.00 
ALT 0.497 0.526 128 0.00 
SOLRAD 0.209 0.215 34 0.00 
CRV5km 0.202 0.350 32 0.00 
SLP 0.183 0.267 29 0.00 
X0 0.079 0.141 11 0.00 
Y0 0.028 0.051 4 0.05 

CRV1k 0.000 0.309 0 0.81 
CRV 0.000 0.012 0 0.96 
ASP 0.000 0.037 0 0.93 
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Set of figures 6.2: Scatter plots of various independent variables with P (dataset A, 132 observations) 

6.2 Backward Stepwise Approach 
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stepwise approach was performed manually in Geoda software. In the case of MT, there 

were 7 independent variables tested: ALT, X0, Y0, SLP, ASP, CRV, and SOLRAD. Below 

is a table showing the backward elimination of independent variables for dataset B, tables 

for dataset A are in Appendix 2. ‘*’ denotes the best fitting (but still reasonable) model, 

final model selected with respect to the results of backward elimination of each year in 

dataset A are marked in bold. 

Table 6.3: Backward elimination of ind. variables in MT prediction (dataset A, 132 stations) 

MT2008 
    ALT Y CRV ASP SOLRAD SLP 
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*0.920 0.918 -37.64 0.000 -5.56 0.000 1.95 0.053   

0.917 0.916 -37.43 0.000 -5.43 0.000   

0.898 0.897 -33.86 0.000                     

MT  = 12.010  - 0.00603761 * [DEM-srtm] - 0.000003320479 * [Y0] 

 

y = 23.57x + 551
R² = 0.183

R² = 0.267

0
200
400
600
800

1000
1200
1400
1600

0 10 20 30

P [
mm

]

SLOPE

y = 0.015x + 623.9
R² = 6E-05

R² = 0.037

0
200
400
600
800

1000
1200
1400
1600

0 90 180 270 360

P [
mm

]

ASPECT [°]

y = 0.000x + 554.9
R² = 0.027

R² = 0.050

0
200
400
600
800

1000
1200
1400
1600

0 200 400

P [
mm

]

X0 [km]

y = 0.000x + 493.4
R² = 0.082

R² = 0.143

0
200
400
600
800

1000
1200
1400
1600

0 100 200 300
P [

mm
]

Y0 [km]



 53

In the case of P, there were all together 26 independent variables. For dataset B the 

backward stepwise approach is shown in tab. 6.4 below, but only the variables eliminated 

without the t-statistics, due to space constrains. 

Table 6.4: Backward elimination of independent variables in P prediction (dataset A, 132 stations) 

R2 adjR2 F MK P2008: Backward Stepwise Approach 

0.86 0.82 21 413 ALT_1k_5k_10k,X,Y,SOLRAD,ASP,SLP,CRV_1k_5k,16 x Zx   

0.86 0.82 28 363 ALT_5k_10k,X,Y,SOLRAD,ASP,SLP,CRV,14 x Zx (-ZxSW5 - ZxW10)   

0.85 0.83 37 299 
ALT_5k_10k,X,Y,SOLRAD,ASP,SLP,10 x Zx (-ZxNW5 - ZxN25                             
- ZxSW25 -ZxW5) 

0.85 0.83 45 255 ALT_10k,X,Y,SOLRAD,ASP,SLP,8 x Zx (-ZxN10 -ZxSW10)   

0.85 0.83 51 231 ALT_10k,X,Y,SOLRAD,ASP,SLP,6 x Zx (-ZxW1 - ZxN1)   

0.84 0.83 59 97 ALT_10k,X,Y,ASP,6 x Zx (-ZxW1 - ZxN1)   

0.84 0.83 70 85 ALT, X, Y, ZxW25, ZxSW1, ZxNW1_10_25, ZxN5   
0.82 0.82 98 68 ALT, X, Y, ZxW25, ZxNW1, ZxN5   

*0.82 0.81 143 11 X, Y, ZxW25, ZxN5   

0.80 0.79 166 10 X, Y, ZxN5   

0.77 0.76 106 11 ALT1k, X, Y, ZxW25              

P = 0.5065762 * [ALT1k] + 0.0004720109 * [X0] + 0.001042431 * [Y0] + 0.2504948 * [ZxW25] - 27.013 

Tables of dataset A are included in Appendix 2. Having to test about 26 independent 

variables it would be time demanding to carry out the selection approach manually, 

excluding one by one variable, for each year and each climate variable. In order to cut the 

time needed for the selection process for dataset A, two shortcuts had to be ‘taken’. Since 

altitude is acknowledged as a good predictor, 4 altitude variables (1 from the DEM and 3 

smoothed to different scales) were tested separately and only the one most significant 

entered the backward stepwise selection with all other independent variables. Second, only 

those variables proven to be significant in the dataset B in year 2008 were included in the 

backward stepwise selection, because dataset B with 132 observations is more 

representative. Third, all 16 Zx variables were included, but only 3-5 Zx variables with the 

student t-test greater than 1 were further taken into account. This way the number of 

independent variables was reduced and the backward stepwise approach was performed 

from this point the same way as in the case of MT, excluding one by one variable, which is 

documented on the DVD attached in folder \regression_protocols\  (containing 

about 110 protocols from Geoda).  
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6.3 Regression Models 

Based on the backward selection process, final regression models look as following:   

� Regression model for MT has two independent variables:  

 �� � �� � ����� � ���0 (6.1) 

� Regression model for P has four independent variables:  

 
 � �� � �����1� � ���0 � ���0 � �����25 (6.2) 

Values of regression coefficients b0-b4 are in equations below the tables of backward 

selection in Appendix 2. Both linear models provide satisfying predictions and therefore 

higher-order polynomial models were not tested. Altitude and latitude can explain more 

than 90% of the spatial variability of MT. Precipitation is in general more difficult to 

predict and therefore more variables are needed in order to explain more than 78% of the 

variability of P.  

Regression equations were put into the ‘Raster Calculator’ in order to create ‘potential 

maps’. 

6.4 Corrector Maps 

Corrector maps are calculated by interpolating of residuals. For both MT and P, IDW was 

used with the power of 2 and the maximum of 10 possible neighboring points that can be 

used to calculate the value at each cell. This method was suggested by Ninyerola [38] for 

MT because it yielded better results than splines. Corrector maps are classified into 9 equal 

interval classes for visualization purposes.  

In the case of P, IDW with the power of 1, 2, and 3, spline with the tension of 400 and 

kriging was tested using independent observations of dataset B. Among IDW techniques, 

the power of 2 was slightly better than 1 or 3. Splines yielded the same results as IDW with 

the power of 2. For the kriging method, a semivariogram was created (fig. 6.3), which did 

not show any characteristic autocorrelation curve fitting the residuals. In addition, there 

was a long time needed for computation of ordinary kriging, therefore the IDW was 

selected. 



 

Figure 6.3: Semivariogram of residuals of P in 2008
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Figure 6.3: Semivariogram of residuals of P in 2008 
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given for comparison and illustration. Areas in green with negative residuals 

are locations, where the model over-predicts the reality, while areas in red and

are where the model under-predicts the reality. Corrector maps are added to ‘potential 

4.6) using ‘Raster Calculator’ in order to obtain the final climate surface.

Corrector maps for MT and P are stored on the DVD attached in t

orrector_map  and \maps\P\corrector_map . 

The overall pattern among the twelve MT corrector maps is under-prediction in the eastern 

and sometimes central part of the CR and over-prediction in the western part of the CR. 

The area around Prague is where the lowest values appear, where temperature is always 

predicted. This has most likely something to do with the heat island problem. Peaks 

prediction where temperatures are usually lower are located around the stations 

‘Pribyslav’ in the centre of CR, ‘Liberec’ in the North and stations onwards 

st.  

The overall pattern of P corrector maps is under-prediction along the borders in the 

west, north and the west and over-prediction in the central part and western part. 

Also, station ‘Milesovka’ in the north-west receives less precipitation than predicted. 
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Figure 6.4: Corrector Map created by interpolating residuals of MT in 2008 (dataset A, 22 stations) 

 

Figure 6.5: Corrector Map created by interpolating residuals of P in 2008 (dataset A, 22 stations) 
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6.5 MT and P Maps 

Once the final climate surface is created, low-pass filter (focal mean of 3 surrounding cells 

in case of MT and 10 surrounding cells in case of P) is then applied to smooth the surface, 

particularly the edges, and to get rid of ‘lonely’ pixels. Final maps, 12 for each year and 

each climate variable (MT and P) are stored in IMG format and exported into JPG format. 

Four examples of final maps are in section 8.1, all from the year 2008. For comparison, 

there are maps created from 22 stations (dataset A) as well as from 132 stations (dataset B).  

6.6 Deviation from Normal 

The World Meteorological Organization (WMO) defines the temperature normal as the 

‘period average, computed for a uniform and relatively long period comprising at least 

three consecutive ten-year periods’. In CR, CHMI publishes 30-years normals for the 

period 1961–1990. In author’s previous work, deviations from normals were for some 

computational problem calculated for the 22 stations and then interpolated using IDW. 

However it is much more effective to subtract the whole rasters, pixel by pixel, to calculate 

an anomaly map, according to the following equations, where i = 1998, 1999, …, 2009.   

 DMT = MTi – MT1961-90 (6.3) 

 DP = Pi – P1961-90 (6.4) 

Deviation rasters are smoothed with a low pass filter (focal mean of 20 neighboring cells) 

and stored at 180 m spatial resolution. 

6.7 Visualization 

For the animation using a GIF file and for the MapServer, final climate surfaces were 

smoothed (with the focal mean statistics, P with 10 and MT with 3 neighboring cells). MT 

surfaces were smoothed with 3 neighboring cells only in order to smooth the edges and 

keep the precision of measured values at meteorological stations. 

It was crucial for the animation to maintain the same classes and layout, so that the only 

features changing is the map itself and the year. The same classification is essential, 

because it makes comparison among the twelve years possible. In addition, P layers were 

laid over a shaded relief with 10% and MT with 15% transparency in order to emphasize 

the climate-topography relationship. Animated GIF files were created with the free 

software GIMP with 3 seconds rate and the resolution of 1600px and 800px.  
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7 Accuracy 

The dataset’s accuracy should be well documented (in metadata) in order to enable users to 

estimate the reliability of any derived results. The accuracy of the resulting maps was 

assessed using statistical criteria mentioned in section 7.1. Nevertheless, not only statistical 

criteria were used to determine the validity of the interpolated climatic maps. Daly et al. 

emphasize that subjective evaluation of the reasonableness of the maps is worthwhile. The 

climatic maps were compared with the Climate Atlas of Czechia in section 7.4. 

7.1 Statistical Criteria 

Table 7.1: Statistical criteria used to assess the agreement of the models 

Definitions N…number of observations 

 F…degrees of freedom 

 O…observed value 

 ��…mean of observed values 

 P…predicted value 

 

Least-square regression R2…correlation coefficient 

 adj-R2… adjusted R2 

 

Mean bias error (MBE) ��� � �
�
∑ �
� � ����

���  

 

Mean absolute error (MAE) ��� � �
�
∑ |
� � ��|�

���  

 

Root mean square error (RMSE) ���� � ��
	
∑ �
� � �����

���  

with an adjustment for a loss in degrees of freedom F 

 

Root mean square error (RMSEML) ����
� � ��
�
∑ �
� � �����

���  

without an adjustment for a loss in F 

Statistical criteria above serve to determine the error between model predictions and the 

real data recorded at the weather stations. Correlation coefficient (also known as 

coefficient of determination) R2 is the first measure of the goodness of fit of the model. 

[31] R2 varies between +1 and -1, both bracket values indicating a perfect fit. [23] 
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Since the magnitudes of R2 are not consistently related to the accuracy of predictions and 

tend to over-estimate the goodness of fit of the models, more objective statistics is needed. 

Adjusted correlation coefficient (adj-R2) compensates for this optimistic trait in R2 by 

taking into account the size of the sample and the number of prediction variables. Unlike 

R2, adj-R2 does not necessarily increase when additional variables are added to the model. 

[31]  

RMSE and MAE are good overall measures of model performance, because they 

summarize the mean difference in the units of predicted variable. RMSE puts a lot of 

weight on high errors, while MAE is less sensitive to extreme values. [50] 

7.2 Precision of DEM 

The SRTM data meet the absolute vertical accuracy of 16 m (linear error at 90% 

confidence), respectively, as it was specified for the mission. The vertical accuracy is 

actually significantly better than 16 m, closer to 10 m, according to USGS. [49] Tab. A-3.1 

in appendix 3 shows the differences for all 132 stations between real altitudes of 

meteorological stations (ALT) and altitudes derived from  

1) the original DEM (ALTDEM)  

2) the DEM resampled by bilinear transformation when converting to UTM (ALTDEM_utm) 

The resulting statistical characteristics are below in tab. 7.2. 

Table 7.2: DEM’s accuracy 

1) DEM 2) DEMutm 
MBE= 2.3 m MBE= 1.9 m 
MAE= 5.0 m MAE= 4.7 m 

RMSE= 7.8 m RMSE= 7.0 m 

Tab. 7.2 confirms the overall good agreement (less than 7 m) in real altitudes and altitudes 

derived from the DEM as stated by the USGS. The DEM transformed to UTM shows even 

better agreement with reality than the original one.  

7.3 Numerical Assessment 

When there are many observations available, typically 60% of them are used for estimating 

the regression model and the remaining 40%, often randomly selected from the whole 

dataset, are used for independent validation. If the model is considered reliable and the 

results are satisfying, the remaining 40% often enter the regression as well to improve the 

model by including all of the stations.  
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The case of this thesis is somehow the opposite. Since there is only a small subset of 

observations available (22 stations) for each year, the detailed dataset B with 111 

observations (132 minus 21 stations which are the same as in dataset A) is used for 

validation of the one year (2008). So there are only 18% of observations used in prediction 

and 72% for validation. This way only one year is independently validated, nevertheless it 

can provide a good measure of the overall performance of the regression models. The 

validation of the regression model for the year 2008 is in tab. A-3.2 in appendix 3. In 

tab. 7.3 below are the results for both MT and P. 

Table 7.3: Validation of MT and P using dataset B (132 stations) 

MT08                            P08 

MBE = -22.2 °C MBE = -196 mm 
MAE = 0.3 °C MAE = 67 mm 
RMS = 0.4 °C RMS = 89 mm 
MAX = 1.6 °C MAX = 280 mm 
MED = 0.3 °C MED = 53 mm 

 

According to the results of validation for the year 2008, we can assume that the regression 

models will predict with the same efficiency in the remaining years as well. The overall 

accuracy of MT given by RMSE (standard deviation) is 0.4°C. In case of P the accuracy 

given by RMSE is approximately 90mm.  

The overall accuracy of the final climate maps is characterized by RMS, calculated as a 

quadratic mean of standard deviations from Geoda’s protocols of regression (tab. 7.4). The 

accuracy of MT is 0.4 °C and 106 mm of P.  

The fit of the MT model is excellent (R2 between 0.90 and 0.97), and the fit of P model is 

better than expected (R2 between 0.78 and 0.92). The following text compares R2 and 

RMSE values to results from works of other authors. The final regression models in 

Arizona and New Mexico showed a higher degree of variance for temperature (R2 = 0.98), 

but a higher root mean-squared error RMSE = 0.74°C. [6] The relationship between the 

average annual air temperature and four terrain variables in Italy explained 92% of the 

variance and produced a standard error of 0.89 °C. [11] In the middle Ebro Valley in 

Spain, R2 of annual mean temperature reached only 0.74 and RMS 0.62 °C, while 

precipitation reached 0.95 and RMSE 28.2 mm using the same combined regression 

method. [50] Ninyerola, the author of the combined residual method, obtained R2 = 0.84 

and RMSE = 137.8 mm for mapping annual precipitation of the Iberian peninsula. [37]    

In China, precipitation in the whole year was predicted with 72.6% and RMSE 8.4%. [46] 
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Table 7.4: R2, standard deviations from protocols of regression & quadratic mean (RMS) 

Year R2 RMSE 

  MT P  
MT 
[°C] 

P 
[mm] 

1998 0.95 0.90 0.40 94.5 

1999 0.96 0.92 0.37 72.3 

2000 0.97 0.86 0.33 109.6 

2001 0.96 0.82 0.36 141.2 

2002 0.96 0.78 0.36 145.4 

2003 0.95 0.87 0.41 72.7 

2004 0.95 0.92 0.41 70.4 

2005 0.93 0.89 0.49 102.4 

2006 0.90 0.85 0.52 105.4 

2007 0.97 0.85 0.34 105.8 

2008 0.97 0.82 0.34 101.0 

2009 0.95 0.83 0.40 120.5 

 
RMSE = 0.40 106.1 

 

7.4 Spatial Assessment 

Spatial assessment is here called a visual comparison of the resulting maps with some other, 

ideally more precise, map. One comparison was already given in figures 6.5–6.8, with maps 

interpolated using the spatially denser dataset B with 132 observations. 22 observations, being 

very sparse for the whole area of CR, do not capture local anomalies, but are overall sufficient 

for predicting annual MT and P.  

Maps in figures 7.1 and 7.2 were simply calculated by subtracting two maps of the same year 

(2008), one created from dataset A (22 observations) minus the one interpolated from dataset B 

(132 observations). The maps clearly show that the map created from dataset B is able to 

depict local anomalies (thanks to the residual correction method) while the map from dataset A 

is more general. Blue colors are areas that are colder/wetter than they should be, while areas in 

red/pink colors are warmer/drier than they should be.  

Figures 7.3–7.6 provide an independent assessment of spatial patterns of MT and P through a 

comparison with a map from different source – the Climate Atlas of Czechia. Annual MT and 

P for the long-term period between 1961–1990 were interpolated using the same regression 

models (eq. 6.1 and 6.2) with 22 stations, and displayed using the same classification. Similar 

color scheme to the Climate Atlas was selected to allow for visual comparison, see figures 7.3–

7.6. The confrontation in figures 7.3–7.6 confirms that the combined regression method yields 

excellent results of MT and reasonable areal distribution of P. 
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Figure 7.1: Deviation of MT (dataset A – dataset B) 

 

Figure 7.2: Deviation of P (dataset A – dataset B) 
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Figure 7.3: 30-year mean of mean air temperature 

 

Figure 7.4: 40-year mean (1961-2000) of annual mean air temperature (Source: Climate Atlas of Czechia) 
[48] 
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Figure 7.5: 30-year mean of annual precipitation 

 

Figure 7.6: 40-year mean (1961-2000) of annual precipitation (Source: Climate Atlas of Czechia) [48] 
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8 Results 

 

Figure 8.1: One example of final MT map 

 

Figure 8.2: The same map as in fig. 8.1 but interpolated from 132 stations, included for comparison.  
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Figure 8.3: One example of final P map 

 

Figure 8.4: The same map as in fig. 8.3 interpolated from 132 stations and included for comparison.  
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8.1 Spatial Pattern of MT and P 

Resulting MT, P maps and their deviations from normal are stored on the DVD attached, at 

http://maps.fsv.cvut.cz/~muller/  as both static and animated maps, and also 

published interactively at http://maps.fsv.cvut.cz/ka-map/ . 

Spatial pattern of MT copies the topography. Since temperature is highly dependent on 

altitude, the warmest areas are river valleys in central Bohemia and south Moravia, while 

the coldest areas are situated along the borders in the mountains. There are only two focus 

points around Prague and in southern Moravia where annual MT reaches over 11 °C (only 

in the years 2000, 2007, and 2008). The spatial pattern of precipitation is similar to the MT. 

The rainiest places are along the borders in the mountains, while the driest areas lie in the 

mountain shadow in the west Bohemia and in the south Moravia. The year 2002 when CR 

was hit by a 100-year flood on the Vltava River is notably wetter compared to other years. 

The agreement of the year 2008 MT map interpolated from 22 stations (fig. 8.5) with the 

more accurate map interpolated from 132 stations (fig. 8.6) is very good, although in 

general the map in fig. 8.5 is a little warmer. This is due to the residual correction, which 

allows taking into account local anomalies. Spatial pattern of P is also satisfying although 

the map created from dataset A is generally slightly over-predicted. The changing pattern 

of MT and P throughout the last twelve years is clearly to see in the animated maps.  

8.2 Deviations from Normal 

Maps of deviations from normal are published in the same way as MT and P maps, but are 

not included in the MapServer application. According to the deviations of MT the warmest 

years were 2000, 2002, 2007, and 2008. The only focal points colder than normal appear in 

years 1998, 2004, and 2005. Maps were smoothed with the ‘Focal Mean’ function with 20 

neighboring cells. Using ‘Raster Calculator’, the arithmetic mean of the 12 deviation maps 

of both MT and P was calculated for each pixel. MT (fig. 8.5) in the last 12 years was 

higher than the 30-year normal, overall by 1.0 °C (mean value of the whole raster in 

fig. 8.5). In the case of P (fig. 8.6), less precipitation than normal fell in central Bohemia 

and northern Moravia by approximately 40 mm, while on the rest of the CR fell more P 

than normal ranging from 20 to 160 mm (mean value of the whole raster was 39.7 mm).  
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Figure 8.5: 12-year mean of deviation from normal of MT 

 

Figure 8.5: 12-year mean of deviation from normal of P 
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9 MapServer 

The popularization of web mapping technologies by Google has encouraged the 

development of more interactive web mapping techniques. [33] For an ordinary user 

looking at a map on the Internet it is now much more than a simple look at a static map, 

which shows isolated information about a specific theme. By using a GIS it is possible to 

combine information and visualize them in form of layers. The Internet can be used in an 

effective manner to visualize as well as provide access to information for a wide range of 

users. [16] 

A map server is in fact a GIS, which is operated by text parameters. Map servers are 

running ‘above’ a web server such as Apache, which makes a request by handing over the 

parameters. Map server uses information passed in the request and the mapfile (discussed 

later in section 9.2) to create an image of the requested map. [7] A variety of map servers 

exist. The commercial branch is certainly represented by ArcGIS Server from ESRI, or 

TopoL Internet Server and T-MapServer from Czech firms, while the Open Source branch 

is quickly approaching the commercial one. The most known Open Source map servers are 

GeoServer and the MapServer from the University of Minnesota (UMN). UMN MapServer 

is running at maps.fsv.cvut.cz at CTU and is therefore used in this thesis.  

UMN MapServer is commonly referred to as ‘MapServer’. MapServer is an Open Source 

geographic data rendering engine written in C. Developed at UMN in cooperation with 

NASA and the Minnesota Department of Natural Resources, MapServer is now a project of 

OSGeo, and is maintained by developers from around the world. The purpose of the 

MapServer is to dynamically display spatial data (maps, rasters and vector data) over the 

internet.  

A simple MapServer application consists of: 

� Map File - a structured text configuration file which tells the MapServer how to 

access data and draw the map, more in section 9.2. 

� Data - MapServer can utilize many geographic data source types (vector formats 

such as ESRI shapefile, PostGIS, KML, or DGN, and raster formats such as 

TIFF/GeoTIFF, PNG and many others via GDAL). 

� HTML Pages - are the interface between the user and the MapServer.  

� Template File - controls how the maps and legends output by MapServer will 
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appear in the browser and also determines how the user can interact with the 

MapServer application (browse, zoom, pan, query). 

� MapServer CGI - The binary or executable file that receives requests and returns 

images, data, etc. By default, this program is called ‘mapserv’. 

� HTTP Server - serves up the html pages for the user’s browser. You need a 

working HTTP (Web) server, such as Apache, on the same machine as you have the 

MapServer. 

Some of the features of the MapServer are [32]: 

� Advanced cartographic output (scale dependent feature drawing,  feature labeling 

including label collision mediation, fully customizable, template driven output, map 

element automation – scalebar, reference map, and legend) 

� Support for popular scripting and development environments (PHP, Java, Perl, etc.) 

� Cross-platform support (Linux, Windows, Mac, etc.) 

� Support of numerous Open Geospatial Consortium (OGC) standards (WMS, WFS, 

etc.) 

� Map projection support (on-the-fly map projection using the Proj.4 library) 

9.1 ka-Map 

MapServer alone does not provide the high level of interactivity, pre-rendering, caching of 

tile images, smooth panning, etc. [33] ka-Map is an open source template that uses a java 

script API for developing highly interactive web-mapping interfaces. [40] ka-Map coupled 

with MapServer is a powerful combination of open source web-mapping technologies. 

MapServer prepares the map images, and ka-Map serves them to the web browser. [33] ka-

Map uses AJAX and the PHP MapScript to render maps. [33]It supports the usual array of 

user GIS interface elements such as: continuous panning without reloading the page, 

zooming to pre-set scales, scalebar, legend, and keymap support. [40] In summary, ka-map 

has 4 requirements, which need to be running together: Apache, MapServer, PHP and 

Mapscript.   

The ka-map package is in fact a folder structure consisting of many HTML, PHP and CSS 

files. The whole structure occupies less than 4MB memory. ka-Map is not installed, you 

can start ‘out of the box’ with minimal configuration. In fact, you need to do 6 steps: 
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1. Decompress the package downloaded into a folder.  

2. It is recommended to set a web server alias by adding the following script into web 

server’s configuration file: 

Alias /ka-map/ "[full path to ka-map folder]" 
<Directory "[full path to ka-map folder]/htdocs/"> 
       Options Indexes 
       AllowOverride None 
       Order allow,deny 
       Allow from all 
</Directory> 

This allows entering a simple URL (http://maps.fsv.cvut.cz/ka-map/ ) 

and having it pointed to the file path where ka-Map content is stored. It also sets the 

rights of access to the ‘htdocs’ folder for the client.  

3. Rename the main configuration file \ka-map\include\config.dist.php  to 

config.php .  

4. Forth step is setting up two library pointers in the config.php file: 

$szPHPMapScriptModule='php_mapscript.'.PHP_SHLIB_SU FFIX; 
$szPHPGDModule = 'gd.'.PHP_SHLIB_SUFFIX; 

5. Tell ka-Map where the mapfile is, as well as some other map-specific settings. This is 

done in the config.php file in the $aszMapFiles array: 

$aszMapFiles = array(  
 
  'mt' => array( 
         'title' => 'Mean Temperatures', 
         'path' => '/data/_projekty/amuller/mt.map' , 
         'scales' => array( 2000000, 1000000,500000 ,250000), 
         'format' =>'PNG'),  
 
   'P' => array( 
         'title' => 'Precipitation', 
         'path' => '/data/_projekty/amuller/p.map',  
         'scales' => array( 2000000, 1000000,500000 ,250000), 
         'format' =>'PNG') 
); 
 

ka-Map allows including multiple mapfiles, which can be selected in a drop down 

menu in the upper left corner of the application (fig. 9.1). 

6. Set up the temporary folder, where kaMap creates its tile cache. The directory does not 

have to be web-accessible, but it must be writable by the web-server-user and allow 

creation of both directories and files. 

$szBaseCacheDir =  "/var/www/tmp/";   
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Figure 9.1: Screenshot of the MapServer with ka-Map 

9.2 Mapfile 

Mapfile is a structured text configuration file for data access and styling for MapServer. It 

defines the area of the map, tells the MapServer where the data is stored and where to 

output images. It also defines map layers, including projections and symbology. It must 

have a MAP extension otherwise MapServer will not recognize it. Mapfile is made up of 

different objects. Each object has a variety of parameters available for it. All mapfile 

parameters are documented in the mapfile reference [32]. A part of the mapfile source code 

displaying three layers including comments is included in Appendix 4. 
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10 Conclusions 

A GIS-based technique has been applied for mapping spatial distribution at high spatial 

resolution of two climatological variables: annual mean temperature and annual 

precipitation for the period 1998–2009. The resulting maps suggest that the combined 

regression approach is a useful tool for interpolating from sparse point data. The combined 

approach involves regression using geographical and terrain variables as predictors 

followed by local interpolation of residuals. Altitude has proven to be overall the best 

predictor of both climatological variables. Altitude and latitude have been found to be the 

most powerful predictors of annual mean temperature. In case of annual precipitation, 

significant variables are ZxW25, altitude, longitude and latitude. Aspect was expected to 

be a significant predictor of MT, but this did not happen.  

The final regression model of mean temperature enables us to describe 90–97% of spatial 

variability with the standard deviation RMSE = 0.4 °C. Final precipitation model shows a 

moderate degree of explained spatial variance 78–92% with RMSE = 106 mm.                   

In comparison with the Climate Atlas of Czechia published by the CHMI, where the 

authors consider linear models dependent on elevation, this study provides a deeper 

analysis of the influence of topography on MT and P.  

The focus of the radar study in chapter 5 was the use of radar data in precipitation 

modeling over the area of the Czech Republic. The first finding was that radar rainfall 

sums do not coincide nor significantly correlate (correlation coefficient R2 = 0.18) with 

rain gauge observations due to high residual errors especially in mountainous regions as 

shown in figures 5.9–5.12. By the means of regression analysis residuals between the radar 

predicted rainfalls and rain gauge observations were calculated and then studied using 

residual regression analysis. A multivariate second order polynomial regression model was 

developed with three topographic and locational variables as the best predictors: altitude, 

distance from the radar antenna and latitude, which can explain up to 74% of variance of 

the residual errors. Such finding is important in regards to radar residual errors which are 

not random, but can be partially predicted which may allow for calibration and 

improvement in a radar’s accuracy. The regression analysis was firstly conducted with an 

annual dataset containing 134 rain gauge stations and secondly for comparison with a 

monthly dataset including 21 rainfall recording gauge stations. The latter dataset is less 

representative but confirms the results of annual datasets and allows us to look at seasonal 
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variation. Nevertheless, as shown in fig. 5.22, there is no significant seasonal variation in           

radar-rainfall prediction. 

Animated maps of deviations of MT from normals show that the last 12 years have been 

significantly warmer than the 30-year normal, approximately by 1 °C, which suggests that 

the hypothesis of global warming is true.  

The key success of this thesis is in obtaining good results with only a subset of 

meteorological stations by using the topography-climate relationship. The resulting 

climatological maps available at http://maps.fsv.cvut.cz/ka-map/  or 

http://maps.fsv.cvut.cz/~muller/  have potential applications in many 

disciplines related to Earth Sciences. 

10.1 Future Work 

The largest limitation of this work is having only a subset of 22 meteorological stations 

available. If data from all stations had been provided, such as dataset B in year 2008, final 

maps would have had better accuracy and would have underlined local anomalies such as 

heat islands, as cities reflect and emit more heat than surrounding natural areas. 

Annual means were studied, although for example mean maximum and mean minimum 

temperature is important in bioclimatological and agricultural research. It would certainly 

be interesting to look at the amplitudes of both climatological variables.  

Details of how to use radar data (particularly the pattern of annual radar sums) in 

precipitation modeling remain unexplored, due to the high errors between radar and gauge 

measurements, which would need to be removed through some calibration.
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Appendix 1: Missing Data 

Table A.1: Dataset A, MT in year 2008 and missing values in red 

NR MSTATION ALT NOV DEC 
Y08 
MT 

 

 
 

    1 Brno Turany 241.0 6.5 2.1 10.7 
     

2 
Ceske 
Budejovice 394.1 4.9 1.5 9.8 

     3 Doksany 158.0 4.9 2.0 9.9 
     4 Holesov 223.6 6.8 2.2 10.3 
     5 Hradec Kralove 278.0 5.9 2.0 10.3 
     6 Cheb 483.0 3.7 0.1 8.5 
     7 Churanov 1117.8 2.0 -2.4 5.5 

     8 Klatovy 425.0 4.6 1.0 9.4 

     9 Kucharovice 334.0 5.5 1.5 10.4 
     10 Liberec 397.7 4.3 0.9 8.7 
     11 Lysa hora 1321.8 0.5 -3.5 3.9 
     12 Milesovka 833.0 2.3 -2.3 6.7 
     13 Mosnov 250.4 6.2 1.7 9.9 
     14 Olomouc 210.0 6.4 2.2 10.5 

     15 Praha Karlov 232.0 5.9 2.7 11.1 
     16 Praha Ruzyne 364.0 4.6 1.0 9.4 
     17 Pribyslav 530.0 4.3 0.1 8.3 
     18 Semcice 234.0 5.1 1.9 10.0 
     19 Svratouch 737.0 3.2 -1.3 7.2 

     20 Tabor 459.0 4.1 0.5 8.9 

     21 Velke Mezirici 452.0 4.9 0.5 8.8 
     22 Velke Pavlovice 196.0 5.89 2.13 10.81 
      

Regression equations from MS Excel (fig. 3.5):  

�������  �  �0.004 	 
�� �  6.844 , �² �  0.869  
�������  �  �0.005 	 
�� �  3.198, �² �  0.945  
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Table A.1: Dataset A, P in year 2008 and missing values in red 

NR MSTATION ALT  CURV JAN FEB MAR JUN JUL AUG NOV DEC Y08P 

1 Brno Turany 241.0 0.05 17 10 32 35.9 62 44.6 29.6 23.5 426 

2 
Ceske 
Budejovice 394.1 -0.03 18.9 10 32.4 78.4 66.2 60 45 24.7 569.3 

3 Doksany 158.0 0.00 29 21 24.7 80.6 98 60.8 15.7 38.7 560.8 

4 Holesov 223.6 0.23 35.4 18 45 25.4 108 47.2 27.9 39.1 534.5 

5 Hradec Kralove 278.0 -0.18 26.3 25 47 45.9 64.6 46.5 46.8 20.3 465.7 

6 Cheb 483.0 -0.05 28.9 41 69.2 69.5 98.6 60 25.1 36.4 731.4 

7 Churanov 1117.8 0.03 41.9 78 140 76.9 127 110 65.3 54.4 1011 

8 Klatovy 425.0 -0.13 21.5 29 47.2 33.3 55.6 54.9 29.6 35.2 478.8 

9 Kucharovice 334.0 0.03 15.4 7.4 28.7 84.1 70.3 38.6 30.3 21.5 445.4 

10 Liberec 397.7 0.08 80.1 63 74 51.5 116 84.2 68.6 74.1 841.2 

11 Lysa hora 1321.8 0.73 107 61 77.8 142 245 144 74.9 102 1269 

12 Milesovka 833.0 1.54 30.4 20 36.4 44.9 75.9 69.4 15.1 50.2 560.8 

13 Mosnov 250.4 -0.05 28.9 12 30.3 77.1 159 103 13.8 43.1 686.3 

14 Olomouc 210.0 0.00 25.9 11 38.5 47.8 75.7 86.1 22.9 26.3 484.8 

15 Praha Karlov 232.0 0.08 20.4 8 14.3 61.8 63.7 50.3 17.6 28.5 408.1 

16 Praha Ruzyne 364.0 0.00 22.1 13 20 66 73.7 68.7 23.7 29.1 492.1 

17 Pribyslav 530.0 -0.03 33.7 23 53.6 56.9 74.4 73 66.8 33.5 563.2 

18 Semcice 234.0 -0.05 38 32 49.5 49.5 72.2 49.6 38.8 39.5 540.1 

19 Svratouch 737.0 0.34 31.4 29 85.7 83.4 95.1 67.5 34.6 31.2 690.4 

20 Tabor 459.0 0.10 32.2 19 60.2 47.4 52.5 56.6 44.7 28.3 442.2 

21 Velke Mezirici 452.0 0.05 36.3 12 50.2 29.8 92.2 31.8 64.1 25.6 484.5 

22 Velke Pavlovice 196.0 0.44 17.3 12 34.7 44.9 50.4 34.9 14.5 27.0 378.1 
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REGRESSION 
Dependent Variable  :        NOV08  Number of Observations:   20 
Mean dependent var  :      37.705  Number of Variab les   :    6 
S.D. dependent var  :     19.4719  Degrees of Freed om    :   14    
 
R-squared           :    0.801272  F-statistic           :     11.2896  
Adjusted R-squared  :    0.730297  Prob(F-statistic )     : 0.000163695  
Sum squared residual:     1506.97  Log likelihood        :       -71.6  
Sigma-square        :     107.641   
--------------------------------------------------- -------------------- 
    Variable    Coefficient     Std.Error    t-Statistic   Probability  
--------------------------------------------------- -------------------- 
    CONSTANT      24.74683       6.879042       3.5 97425    0.0029133 
         JAN     0.6771153      0.1561442       4.3 36473    0.0006836 
         JUN    -0.1873656      0.1254143      -1.4 93973    0.1573764 
         AUG     -0.289728      0.1524117      -1.9 00956    0.0780942 
         ALT    0.05403731     0.01276454       4.2 33392    0.0008346 
        CURV     -31.60545       7.778165      -4.0 63355    0.0011625 
--------------------------------------------------- -------------------- 

������ � 24.75 � 0.6771 	 �
� � 0.1874 	 ��� � 0.2897 	 
�� � 0.05404 	 
�� � 31.61 	 ���� 

REGRESSION 
Dependent Variable  :        DEC08  Number of Observations:   20 
Mean dependent var  :       39.22  Number of Variab les   :    5 
S.D. dependent var  :     18.7669  Degrees of Freed om    :   15    
   
R-squared           :    0.961063  F-statistic           :     92.5582  
Adjusted R-squared  :    0.950679  Prob(F-statistic )     :2.19784e-010  
Sum squared residual:     274.273  Log likelihood        :    -54.5627  
Sigma-square        :     18.2849   
--------------------------------------------------- -------------------- 
    Variable    Coefficient     Std.Error    t-Statistic   Probability  
--------------------------------------------------- -------------------- 
    CONSTANT      13.71841       2.809142       4.8 83486    0.0001986 
         FEB     0.9121725      0.1077099       8.4 68792    0.0000004 
         MAR    -0.3633209      0.0680562      -5.3 38543    0.0000828 
         JUL     0.1972553     0.02817413       7.0 01291    0.0000043 
        CURV      12.40645       2.701437       4.5 92538    0.0003522 
--------------------------------------------------- -------------------- 
������ � 13.72 � 09122 	 � ! � 0.3633 	 �
� � 0.1973 	 ��� � 12.41 	 ���� 

REGRESSION 
Dependent Variable  :        NOV05  Number of Observations:   21 
Mean dependent var  :     31.8952  Number of Variab les   :    4 
S.D. dependent var  :     20.9225  Degrees of Freed om    :   17    
   
R-squared           :    0.918745  F-statistic           :     64.0723  
Adjusted R-squared  :    0.904405  Prob(F-statistic )     :1.79042e-009  
Sum squared residual:      746.96  Log likelihood        :    -67.2984  
Sigma-square        :     43.9389   
--------------------------------------------------- -------------------- 
    Variable    Coefficient     Std.Error    t-Statistic   Probability  
--------------------------------------------------- -------------------- 
    CONSTANT      12.79761       2.842123       4.5 02833    0.0003138 
         JAN    -0.5820471      0.1308637      -4.4 47736    0.0003531 
         DEC       0.53418     0.06947958       7.6 88302    0.0000006 
         MAR     0.9119744      0.1813468       5.0 28897    0.0001032 
--------------------------------------------------- -------------------- 
�����	 � 12.80 � 0.5820 	 �
� � 0.5342 	 " � � 0.9120 	 �
�  
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Appendix 2: Backward Stepwise Approach 

Radar Study (Chapter 5) 

Table A-2.1: Backward Stepwise Approach in Multivariate Linear Regression 

    ALTITUDE N_LAT DIST SOLARRAD DIRDIFF10 MT2008 SLOPE 

R2 
adj. 
R2 T prob. t prob. T prob. t prob. t prob. T prob. t prob. 

0.69 0.67 6.99 0.000 4.42 0.000 2.71 0.008 -1.70 0.092 1.77 0.079 -1.43 0.155 0.40 0.687 
0.68 0.67 7.35 0.000 4.51 0.000 2.77 0.006 -1.66 0.099 1.76 0.081 -1.42 0.159   
0.68 0.67 10.3 0.000 4.66 0.000 3.00 0.003 -1.81 0.073 1.79 0.076 

   
  

0.67 0.66 10.52 0.000 4.45 0.000 3.57 0.000 -1.99 0.048   

0.66 0.65 13.55 0.000 4.18 0.000 3.64 0.000 
       

  
0.63 0.62 13.52 0.000 6.30 0.000                     

Table A-2.2: 2nd Order Polynomial Multivariate Regression 

    ALTITUDE DIST DIST2 N_LAT 

R2 adj. R2 T prob. t prob. t prob. t prob. 

0.74 0.73 13.88 0.000 -4.52 0.000 5.99 0.000 2.57 0.011 
0.72 0.72 13.38 0.000 -4.94 0.000 7.02 0.000     

 
Mean Temperatures (Chapter 6, section6.2) 

Below are tables showing the backward elimination of independent variables for dataset A. 

* denotes the best fitting (but still reasonable) model, final model selected is in bold. 

MT09 
    ALTITUDE Y ASP SLP CURV SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.963 0.948 -10.24 0.000 -2.29 0.037 1.57 0.137 1.32 0.206 -0.89 0.386 -0.15 0.881 
0.961 0.952 -17.91 0.000 -2.62 0.017 1.52 0.146 1.03 0.320 

   
  

*0.959 0.952 -19.88 0.000 -2.41 0.027 1.56 0.014   

0.953 0.948 -19.60 0.000 -2.67 0.015 
       

  
0.935 0.932 -17.03 0.000                     

###### 0.02 y = 11.656  - 0.00563341 * [DEM-srtm] - 0.000003786632 * [Y0] 
0.02 0.02 

MT08 
    ALTITUDE Y ASP SLP CURV SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.978 0.969 -13.79 0.000 -3.06 0.008 1.65 0.120 1.79 0.094 -1.37 0.191 0.11 0.910 
0.975 0.969 -23.42 0.000 -3.11 0.006 1.53 0.145 1.34 0.199 

   
  

*0.973 0.968 -25.07 0.000 -2.76 0.013 1.64 0.118   

0.969 0.966 -24.26 0.000 -3.37 0.003 
       

  
0.951 0.948 -19.63 0.000                     

###### 0.02 y = 12.197  - 0.00588921 * [DEM-srtm] - 0.000003992299 * [Y0] 

0.02 0.02 

 
 

 
 



XIII 

 

MT07 
    ALTITUDE Y SLP CURV SOLRAD ASP 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.976 0.966 -13.59 0.000 -2.58 0.021 1.72 0.106 -1.34 0.201 0.73 0.474 0.65 0.524 
0.975 0.967 -14.00 0.000 -3.08 0.007 1.69 0.111 -1.28 0.218 0.91 0.374   
*0.974 0.968 -21.73 0.000 -2.99 0.008 1.97 0.065 -1.22 0.241 

   
  

0.972 0.967 -22.54 0.000 -2.87 0.010 1.67 0.112   

0.967 0.964 -23.65 0.000 -2.35 0.030 
       

  
0.958 0.956 -21.27 0.000                     

###### 0.012 y = 12.211  - 0.00584728 * [dem-srtm] - 0.0000028924 * [Y0] 
    0.009 0.008 

MT06 
    ALTITUDE ASP Y SLP CURV SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.917 0.884 -6.74 0.000 1.51 0.151 0.20 0.844 0.97 0.349 -0.88 0.395 -0.037 0.971 
0.912 0.897 -13.54 0.000 1.57 0.134 0.42 0.677 

     
  

*0.911 0.902 -13.84 0.000 1.54 0.139   
0.900 0.895 -13.40 0.000 

       
  

0.900 0.889 -13.03 0.000     -0.08 0.935             

0.012 0.008 y = 10.671  - 0.00490266 * [dem-srtm] - 0.000000202995 * [Y0] 
0.000 -0.006 

            MT05 
    ALTITUDE ASP Y SLP CURV SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.938 0.914 -6.14 0.000 1.32 0.206 0.13 0.902 0.86 0.401 -0.67 0.510 -0.503 0.622 
0.934 0.924 -15.85 0.000 1.25 0.228 0.13 0.900   
*0.934 0.928 -16.28 0.000 1.31 0.206   
0.929 0.925 -16.13 0.000   

0.929 0.921 -15.75 0.000     -0.32 0.756             

0.005 0.003 y = 10.447  - 0.00554196 * [dem-srtm] - 0.0000005441739 * [Y0] 
0.000 -0.004 

MT04 
    ALTITUDE ASP N_LAT CURV SLP SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.966 0.952 -10.78 0.000 2.07 0.056 -0.55 0.593 -1.09 0.293 0.97 0.348 0.08 0.931 
0.963 0.957 -21.43 0.000 2.14 0.046 -0.49 0.627 

     
  

*0.962 0.958 -21.87 0.000 2.48 0.023 
       

  
0.950 0.948 -19.51 0.000 

       
  

0.954 0.949 -19.75 0.000     -1.19 0.248             

0.009 0.008 y = 10.923  - 0.00583272 * [dem-srtm] - 0.000001723783 * [Y0] 
0.004 0.001 

MT03 
    ALTITUDE Y0 ASP SLP CURV SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.957 0.940 -0.90 0.000 -1.88 0.079 1.46 0.165 1.06 0.306 -0.81 0.427 0.25 0.806 
*0.953 0.945 -18.88 0.000 -1.74 0.098 1.61 0.125 

     
  

0.946 0.940 -18.23 0.000 -2.29 0.033 
       

  
0.931 0.928 -16.44 0.000                     

###### 0.017 y = 11.372  - 0.00538561 * [dem-srtm] - 0.000003392663 * [Y0] 
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0.015 0.012 

MT02 
    ALTITUDE Y0 ASP SLP CURV SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.964 0.949 -9.88 0.000 -1.62 0.126 1.58 0.136 1.22 0.240 -1.26 0.228 -0.52 0.609 
*0.959 0.952 -20.29 0.000 -1.19 0.074 1.38 0.186 

     
  

0.955 0.950 -20.02 0.000 -2.41 0.026 
       

  
0.941 0.938 -17.86 0.000                     

###### 0.014 y = 11.528  - 0.0052164 * [DEM-srtm] - 0.000003110357 * [Y0] 
0.014 0.012 

            MT01 
    ALTITUDE Y0 SLP ASP CURV SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.968 0.956 -10.91 0.000 -1.49 0.158 1.77 0.097 1.67 0.116 -1.59 0.133 -0.045 0.656 
0.968 0.958 -18.67 0.000 -1.68 0.113 1.76 0.098 1.65 0.118 -1.65 0.118   
0.958 0.952 -18.31 0.000 -2.11 0.049 0.80 0.434 

     
  

*0.957 0.953 -20.59 0.000 -1.97 0.063   
0.948 0.946 -19.17 0.000                     

#REF! #REF! y = 10.618  - 0.00538076 * [DEM-srtm] - 0.000002560351 * [Y0] 
###### 0.007 

            MT00 
    ALTITUDE ASP Y0 SLP CURV SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.973 0.962 -12.10 0.000 1.47 0.160 -1.21 0.245 1.25 0.231 -1.07 0.301 -0.076 0.941 
*0.970 0.965 -23.79 0.000 1.48 0.156 -1.12 0.278   
0.968 0.964 -23.64 0.000 1.93 0.068   
0.961 0.960 -22.35 0.000 

     
  

0.966 0.963 -23.37 0.000     -1.66 0.113             

####### 0.005 y = 11.968  - 0.00556648 * [DEM-srtm] - 0.000001940305 * [Y0] 
0.005 0.003 

            MT99 
    ALTITUDE ASP Y0 SLP SOLRAD CURV 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.969 0.956 -10.90 0.000 1.82 0.089 -1.05 0.311 1.13 0.270 -0.70 0.492 -0.55 0.590 
*0.965 0.960 -22.20 0.000 1.81 0.088 -1.04 0.313   
0.963 0.959 -22.16 0.000 2.26 0.036 

     
  

0.954 0.951 -20.26 0.000 
     

  

0.959 0.955 -21.17 0.000     -1.64 0.116             

####### 0.005 y = 11.230  - 0.00559034 * [DEM-srtm] - 0.000002129976 * [Y0] 
0.005 0.004 

MT98 
    ALTITUDE Y0 ASP SLP CURV SOLRAD 

R2 
adj. 
R2 t prob. t prob. t prob. t prob. t prob. T prob. 

0.961 0.946 -9.34 0.000 -1.32 0.208 1.56 0.140 1.35 0.195 -1.35 0.197 -0.72 0.480 
*0.955 0.947 -19.28 0.000 -1.576 0.132 1.27 0.219 

     
  

0.951 0.946 -19.16 0.000 -2.07 0.053 
     

  
0.940 0.937 -17.67 0.000                     

####### 0.010 y = 11.071  - 0.00550756 * [DEM-srtm] - 0.000002955612 * [Y0] 
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Appendix 3: Accuracy 

Table A-3.1:Vertical Accuracy of the DEM 
d = ALT-ALTDEM  

NR NAME ALT 
ALT 

DEM_utm d ALTDEM d NR NAME ALT 
ALT 

DEM_utm d ALTDEM d 
  

1 Holesov 223.6 225 -1 226 -2 41 
Pec pod 
Snezkou 

816 834 -18 818 -2 

2 Kromeriz 233 232 1 233 0 42 Upice 413 407 6 407 6 

3 Protivanov 675 678 -3 676 -1 43 Velichovky 299 291 8 293 6 

4 
Stitna nad Vlari 
– Popov 

315 311 4 311 4 44 Vrchlabi 482 485 -3 484 -2 

5 Stare Mesto 235 219 16 219 16 45 
Destne v Orlic. 
Horach 

653 657 -4 657 -4 

6 Strani 383 381 2 383 0 46 Polom 748 726 22 724 24 

7 Straznice 176 170 6 170 6 47 
Rokytnice v 
Orlic.horach 

564 577 -13 577 
-

13 

8 Vizovice 313 301 12 309 4 48 
Rychnov nad 
Kneznou 

335 327 8 323 12 

9 Brod nad Dyji 175 175 0 174 1 49 Usti nad Orlicí 402 399 3 400 2 

10 Brno 241 237 4 237 4 50 Zamberk 405 404 1 404 1 

11 
Bystrice nad 
Pernstejnem 

553 549 4 549 4 52 Gajer 515 514 1 515 0 

12 Brno 236 234 2 233 3 53 Hradec Kralove 278 255 23 254 24 

13 Dukovany 400 397 3 396 4 54 Mokosin 255 255 0 258 -3 

14 Dyjakovice 201 197 4 197 4 55 Pardubice 225 227 -2 227 -2 

15 
Kostelni 
Myslova 

569 569 0 571 -2 56 Sez 529 520 9 523 6 

16 
Kostelni 
Myslova 

569 569 0 571 -2 57 Svratouch 737 730 7 728 9 

17 Kucharovice 334 337 -3 337 -3 58 Holovousy 321 299 22 299 22 

18 Lednice 176 173 3 173 3 59 Jicin 283 282 1 282 1 

19 Nedvezi 722 718 4 718 4 60 Podebrady 189 192 -3 189 0 

20 Sedlec 474 472 2 472 2 62 Zelezna Ruda 867 869 -2 866 1 

21 Vatin 555 554 1 553 2 63 Klatovy 425 422 3 414 11 

22 Velke Mezirici 452 455 -3 455 -3 64 Plzen 360 355 5 358 2 

23 Cerna v 
Posumavi 

739 739 0 737 2 65 Plzen 328 335 -7 335 -7 

24 Churanov 1117.8 1117 1 1117 1 66 Stankov 362 361 1 361 1 

25 Churanov 1118 1111 7 1109 9 67 
Konstantinovy 
Lazne 527 529 -2 529 -2 

26 Husinec 492 492 0 490 2 68 Kralovice 468 467 1 468 0 

27 Kocelovice 515 512 3 512 3 69 Krasne Udoli 642 649 -7 649 -7 

28 Kocelovice 519 512 7 512 7 70 
Marianske 
Lazne 691 690 1 687 4 

29 
Rozmital pod 
Tremsinem 524 524 0 524 0 71 Primda 742 742 0 743 -1 

30 Temelin 503 501 2 499 4 72 Cheb 483 480 3 480 3 

31 Vraz 433 434 -1 434 -1 73 Karlovy Vary 603 598 5 597 6 

32 Borkovice 419 416 3 416 3 74 Sindelova 587 585 2 586 1 

33 Bynov 475 475 0 476 -1 75 Belotin 306 304 2 304 2 

34 
Ceske 
Budejovice 

394.06 393 1 393 1 76 Cervena 749 748 1 747 2 

35 Cesky Krumlov 554 540 14 541 13 77 Javornik 289 284 5 285 4 

36 
Jindrichuv 
Hradec 

524 524 0 524 0 78 Jesenik 465 465 0 466 -1 

37 Nadejkov 616 613 3 612 4 79 
Karlova 
Studanka 

780 788 -8 798 
-

18 
38 Tabor 459 462 -3 462 -3 80 Lucina 300 295 5 295 5 

39 Vyssi Brod 559 557 2 557 2 81 Lysa hora 1321.8 1314 8 1314 8 

40 Labska bouda 1315 1319 -4 1320 -5 82 Mosnov 250.4 245 5 245 5 
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NR NAME ALT 
ALT 

DEM_utm 
d ALTDEM d NR NAME ALT 

ALT 

DEM_utm 
d ALTDEM d 

83 Opava 270 258 12 259 11 133 Liberec 397.7 400 -2 399 -1 

84 Ostrava 238.6 236 3 235 4 134 Straz pod Ralskem 310 308 2 308 2 

85 Serak 1328 1328 0 1327 1 135 Varnsdorf 365 372 -7 374 -9 

86 Svetla Hora 593 591 2 589 4     

87 
Mesto 

Albrechtice 
483 502 

-
19 

500 
-

17  
88 Dubicko 275 271 4 269 6 

 

89 Jevícko 342 343 -1 344 -2 

90 Luka 510 508 2 503 7 

91 Olomouc 210 207 3 207 3 

92 Paseka 290 288 2 288 2 

93 Sumperk 328 324 4 324 4 

94 Trebarov 375 386 -
11 

387 -
12 

95 Horni Becva 565 558 7 556 9 

97 Maruska 664 639 25 645 19 

98 Prerov 202.7 201 2 201 2 

99 Valasske Mezirici 334 333 1 333 1 

100 Vsetin 387 380 7 379 8 

101 Lany 415 421 -6 421 -6 

102 Neumetely 322 318 4 318 4 

103 Praha 232 234 -2 218 14 

104 Praha 282 280 2 281 1 

105 Praha 191 204 
-

13 204 
-

13 
106 Praha 302.04 302 0 302 0 

107 Príbram 555 553 2 557 -2 

108 Praha 364 362 2 362 2 

109 Brandys n. Labem 179 179 0 179 0 

110 Desna 772 768 4 770 2 

111 Semcice 234 231 3 231 3 

112 Tuhan 160 161 -1 161 -1 

113 Kosetice 534 535 -1 534 0 

114 Nedrahovice 348 350 -2 350 -2 

115 Novy Rychnov 624 615 9 619 5 

116 Ondrejov 485 494 -9 493 -8 

117 Pribyslav 530 525 5 525 5 

118 Doksany 158 156 2 156 2 

119 Doksany 158 156 2 156 2 

120 Tusimice 322.4 323 -1 323 -1 

121 Kopisty 240 241 -1 241 -1 

122 Milesovka 833 816 17 792 41 

123 Nova Ves v Hor. 725 730 -5 730 -5 

124 Smolnice 345 343 2 342 3 

125 Strojetice 372 370 2 370 2 

126 Teplice 236 217 19 218 18 

127 Ustí nad Labem 375 364 11 364 11 

128 Zatec 210 214 -4 213 -3 

  129 Bedrichov 777 771 6 771 6 

130 Ceska Lipa 246 253 -7 253 -7 

131 Doksy 284 287 -3 287 -3 

132 Hejnice 396 397 -1 396 0 
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Table A-3.2: Validation of MT and P in 2008 

 

NR NAME 
MT 

2008 
MT08 d 

P 
2008 

P08 d NR NAME 
MT 

2008 
MT08 d 

P 
2008 

P08 d 

2 Kromeriz 10.8 10.3 0.5 454 480 -27 47 
Rokytnice v 
Orlic.horach 

7.8 8.1 -0.3 798 832 -34 

3 Protivanov 7.8 7.7 0.1 605 722 -117 48 
Rychnov nad 
Kneznou 

9.4 9.6 -0.2 578 658 -80 

4 
Stitna nad Vlari – 
Popov 

9.2 10.0 -0.8 718 624 94 49 Usti nad Orlicí 9.0 9.2 -0.2 684 630 53 

5 Stare Mesto 10.5 10.5 0.0 522 457 66 50 Zamberk 8.5 9.1 -0.6 643 684 -41 
6 Strani 9.2 9.7 -0.5 753 658 95 52 Gajer 8.3 8.5 -0.2 630 610 20 

7 Straznice 10.6 11.0 -0.4 546 545 1 54 Mokosin 10.4 10.1 0.3 490 390 99 

8 Vizovice 9.7 9.9 -0.2 645 647 -2 55 Pardubice 10.1 10.3 -0.2 495 399 97 

9 Brod nad Dyji 10.8 11.1 -0.3 365 383 -19 56 Sez 8.7 8.5 0.2 618 590 28 

10 Brno 10.7 10.7 0.0 426 426 0 58 Holovousy 10.1 9.7 0.4 536 553 -17 

11 
Bystrice nad 
Pernstejnem 

8.4 8.3 0.1 519 600 -81 59 Jicin 9.9 9.7 0.2 567 610 -43 

13 Dukovany 9.6 9.6 0.0 380 469 -89 60 Podebrady 10.2 10.4 -0.2 615 413 201 

14 Dyjakovice 10.7 11.1 -0.4 368 345 22 62 Zelezna Ruda 7.2 6.9 0.3 1068 830 238 

15 Kostelni Myslova 8.4 8.5 -0.1 515 554 -39 64 Plzen 9.6 9.6 0.0 467 496 -29 

16 Kostelni Myslova 8.4 8.5 -0.1 510 554 -44 65 Plzen 8.7 9.7 -1.0 453 509 -56 
18 Lednice 11.0 11.0 0.0 429 332 97 66 Stankov 9.1 9.7 -0.6 531 441 90 

19 Nedvezi 7.5 7.3 0.2 511 691 -180 67 
Konstantinovy 
Lazne 

7.8 8.5 -0.7 518 620 
-

102 

20 Sedlec 9.6 9.0 0.6 431 495 -64 68 Kralovice 8.9 8.9 0.0 423 567 
-

144 

21 Vatin 8.1 8.2 -0.1 724 568 155 69 Krasne Udoli 7.3 7.7 -0.4 567 709 
-

142 
23 Cerna v Posumavi 6.6 7.8 -1.2 685 746 -61 70 Marianske Lazne 6.7 7.4 -0.7 810 805 4 

25 Churanov 5.5 5.5 0.0 1017 1015 2 71 Primda 7.2 7.3 -0.1 691 677 14 

26 Husinec 8.3 9.2 -0.9 525 596 -71 73 Karlovy Vary 7.6 7.9 -0.3 475 755 
-

280 
27 Kocelovice 8.9 8.9 0.0 516 529 -13 74 Sindelova 6.9 7.9 -1.0 879 836 43 

28 Kocelovice 8.9 8.9 0.0 518 529 -11 75 Belotin 9.7 9.7 0.0 618 674 -56 

29 
Rozmital pod 
Tremsinem 

8.3 8.7 -0.4 584 569 15 76 Cervena 7.1 7.1 0.0 785 838 -53 

30 Temelin 8.9 9.0 -0.1 502 525 -23 77 Javornik 10.3 9.6 0.7 686 558 128 

31 Vraz 9.0 9.3 -0.3 503 482 21 78 Jesenik 8.6 8.6 0.0 834 793 41 

32 Borkovice 8.9 9.4 -0.5 461 493 -32 79 
Karlova 
Studanka 

6.6 6.8 -0.2 1141 980 161 

33 Bynov 8.7 9.3 -0.6 550 532 18 80 Lucina 9.7 9.7 0.0 642 733 -91 
35 Cesky Krumlov 8.7 9.0 -0.3 523 666 -144 83 Opava 9.7 9.8 -0.1 549 615 -67 

36 Jindrichuv Hradec 8.8 8.8 0.0 555 561 -6 84 Ostrava 10.1 9.9 0.2 677 624 52 

37 Nadejkov 8.2 8.1 0.1 493 546 -53 85 Serak 3.5 3.6 -0.1 1149 1232 -83 

39 Vyssi Brod 7.4 9.0 -1.6 779 669 110 86 Svetla Hora 7.2 7.9 -0.7 685 784 -99 

40 Labska bouda 3.1 3.4 -0.3 1485 1407 78 87 
Mesto 
Albrechtice 8.9 8.4 0.5 784 752 32 

41 Pec pod Snezkou 5.8 6.3 -0.5 1281 1049 232 88 Dubicko 9.6 9.9 -0.3 489 566 -78 

42 Upice 8.4 9.0 -0.6 630 678 -48 89 Jevícko 8.8 9.6 -0.8 586 540 46 

43 Velichovky 9.5 9.9 -0.4 539 527 13 90 Luka 8.8 8.7 0.1 576 599 -23 

44 Vrchlabi 8.5 8.4 0.1 846 902 -56 92 Paseka 10.0 9.9 0.1 495 606 
-

111 

45 Destne v Orlic. 
Horach 

7.0 7.6 -0.6 943 888 54 93 Sumperk 8.9 9.6 -0.7 619 754 -
135 

46 Polom 7.4 7.2 0.2 765 916 -152 94 Trebarov 9.2 9.3 -0.1 582 563 19 
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NR NAME MT 
2008 

MT08 d P 
2008 

P08 d 

97 Maruska 8.1 7.9 0.2 776 776 -1 

98 Prerov 10.1 10.5 -0.4 422 510 -88 

99 Valasske Mezirici 9.4 9.6 -0.2 698 789 -91 

100 Vsetin 9.1 9.4 -0.3 715 765 -50 

101 Lany 8.9 9.1 -0.2 500 547 -48 

102 Neumetely 9.5 10.0 -0.5 485 494 -9 

104 Praha 10.1 10.5 -0.4 500 421 78 
105 Praha 11.9 11.2 0.7 425 395 29 

106 Praha 10.4 10.5 -0.1 522 460 62 

107 Príbram 8.8 8.6 0.2 475 562 -87 

109 
Brandys nad 
Labem 

10.5 10.7 -0.2 580 387 193 

110 Desna 5.9 6.6 -0.7 1155 1159 -5 

112 Tuhan 10.1 10.6 -0.5 495 412 83 
113 Kosetice 8.7 8.5 0.2 505 540 -35 

114 Nedrahovice 8.6 9.7 -1.1 509 478 31 

115 Novy Rychnov 7.8 8.1 -0.3 609 602 8 

116 Ondrejov 8.7 8.9 -0.2 549 569 -20 

119 Doksany 10.0 9.9 0.1 560 561 -1 

120 Tusimice 9.5 9.5 0.0 420 446 -27 

121 Kopisty 9.4 10.0 -0.6 505 482 23 

123 
Nova Ves v 
Horách 

6.8 7.0 -0.2 713 774 -61 

124 Smolnice 9.3 9.4 -0.1 331 493 -162 

125 Strojetice 9.9 9.3 0.6 501 519 -19 
126 Teplice 10.2 10.1 0.1 552 444 108 

127 Ustí nad Labem 9.5 9.1 0.4 595 555 41 

128 Zatec 9.2 10.2 -1.0 476 429 47 

129 Bedrichov 6.1 6.5 -0.4 1078 1117 -39 

130 Ceska Lipa 9.5 9.7 -0.2 628 564 64 

131 Doksy 9.2 9.6 -0.4 570 560 10 

132 Hejnice 9.3 8.7 0.6 956 873 82 

134 
Straz pod 
Ralskem 

8.8 9.3 -0.5 729 732 -3 

135 Varnsdorf 8.9 8.9 0.0 856 632 224 

 

 

MBE = -22.2 °C MBE = -196 mm 

MAE = 0.3 °C MAE = 67 mm 

RMSE = 0.4 °C RMSE = 89 mm 

MAX = 1.6 °C MAX = 280 mm 
MED = 0.3 °C MED = 53 Mm 
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Appendix 4: Mapfile 

MAP 
  NAME MT        # each object should have a name 
  PROJECTION 
   'init=epsg:32633'  #WGS84 UTM Zone 33N 
  END 
  SIZE 450 300   # default size of a map in pixels  
  EXTENT 261955 5361927 805940 5665141 
  UNITS meters   # map units 
  SHAPEPATH "/data/amuller/MT/" # path to data 
  IMAGECOLOR 255 255 255 # background color 
  IMAGETYPE png  # type of the resulting image 
  TRANSPARENT ON #allow transparency 
  FONTSET '/data/amuller/fonts/font.list' 
 
 LEGEND 
    KEYSIZE 12 15 
    LABEL 
      TYPE TRUETYPE 
      FONT arial 
      SIZE 10 
      COLOR 0 0 0 
      ALIGN RIGHT 
    END 
    STATUS ON 
  END  
 
  REFERENCE 
   STATUS ON 
   IMAGE '/data/amuller/MT/RefMap.jpg' 
   SIZE 150 84 
   EXTENT 261955.53631154 5361927.43289661 805939.9 57613716 5665140.53932282 
   COLOR -1 -1 -1 
   OUTLINECOLOR 255 0 0 
  END  #REFERENCE 
 
  SYMBOL    
   NAME "square"    
   TYPE VECTOR    
   FILLED true    
   POINTS      
    0 0  
    0 1 
    1 1 
    1 0 
    0 0    
   END  
  END 
 
### Beginning of Layers ### 
 
LAYER  
    GROUP 'Relief' 
    NAME 'Shaded Relief' 
    DATA '/data/amuller/base/shaded_relief.jpg' 
    TYPE RASTER 
    STATUS OFF 
    PROJECTION 
    'init=epsg:32633' 
    END 
END 
 
LAYER 
    GROUP 'MT' 
    NAME mt2008 
    DATA MT08_fm3.img 



XX 

 

    TYPE RASTER 
    STATUS ON 
    PROJECTION 
     'init=epsg:32633' 
    END 
    METADATA 
     'OPACITY' '85' 
    END 
    CLASSITEM "[pixel]"  # class using an EXPRESSIO N using only [pixel]. 
  CLASS 
    EXPRESSION ([pixel] > 0 AND [pixel] <= 5) 
    STYLE 
      COLOR 0 38 115 
    END 
  END 
  CLASS 
    EXPRESSION ([pixel] > 5 AND [pixel] <= 6) 
    STYLE 
      COLOR 0 77 168 
    END 
  END 
  #.  
  #. 
  #. 
  # more classes 
 
 
LAYER  
    GROUP 'Cities' 
    NAME '9 Largest Cities' 
    DATA '/data/amuller/base/cities_large' 
    TYPE POINT 
    STATUS OFF 
    PROJECTION 
    'init=epsg:32633' 
    END 
   LABELITEM 'NAZEV_ENG' 
   CLASS 
    NAME '9 Largest Cities' 
    STYLE 
     SYMBOL 'square' 
     COLOR 0 0 0 
     SIZE 5 
    END 
    LABEL 
     TYPE TRUETYPE 
     SIZE 12 
     FONT Arial 
     COLOR 0 0 0 
     POSITION UC 
     OFFSET 0 0 
     PRIORITY 10 
      #  MAXSCALEDENOM 1100000 
     END #LABEL    
    END #CLASS 
END 
 
END 
### END of ALL Layers ### 
END # End of mapfile  
 


