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Abstract

This thesis presents mapping of two climate vaesblmean air temperature and
precipitation over the Czech Republic using spatigdrpolation of climatological data.
Geographical information is used to predict themaliological variables through a
regression relationship. Geographic Informationt&ysArcGIS provides the means to
produce climatological surfaces for the entire @zeRepublic between the years
1998-2009. The temporal resolution of the mapsnisual and the spatial resolution is
90 m.

Climatological data were obtained from a small stileg only 22 meteorological stations
available online at the Czech Hydrometeorologicatitute websites. More detailed data
from 132 stations — were obtained only for the y2@08 and were used for independent
tests of accuracy. Monthly radar data were alsainbtl for the year 2008 for testing

purposes. Chapter 5 presents a separate studywogtradar in precipitation modeling.

Independent variables were derived from a 90 ntaliglevation model (DEM) acquired
by the Space Shuttle Radar Topographic Mapping ibiss(SRTM). Significant
independent variables for predicting mean tempegattere altitude and latitude. Four out
of 28 independent variables were selected for pitation: altitude, longitude, latitude and
variable ZxW25 depicting topographical barriersaispecific westerly direction and radius
of 25 km. The final regression models show a higbree of explained variance for mean
air temperature (R 0.90-0.97, and root-mean-squared error RMSE &} and a
moderate degree of explained variance for pretipita (RP=0.78-0.92,
RMSE = 106 mm). This study provides a deeper asabfshe influence of topography on
mean temperature and precipitation in the CzecluRep

Annual variation in mean air temperature and pitatipn as well as deviation from
40-year normals was visualized in an animated rkamal climatological surfaces were

published interactively using UMN MapServer and\tap template.



Abstrakt

Predkladana diplomova prace se zabyva mapovanim #lmmatickych prvki v Ceské
republice: roni primérné teploty vzduchu a fmérného r@niho Uhrnu srézek.
Geograficky informani systém ArcGIS slouZi jako néstroj pro vyeoi klimatickych

vrstev pro celoweskou Republiku v prostorovém rozlieni 90 m v diid®98—20009.

Klimatické velginy jsou nefeny na meteorologickych stanicich, které jsou &alastupné
na webu Ceského hydrometeorologickéhaadu CHMU), a kterych ma tato préace
k dispozici pouhych 22. tddem byla poskytnuta data ze 132 stanic, avSakeppie rok
2008. Tato data byla pouZzita k nezavislénitrani gesnosti vyslednych klimatickych
veligin. Dale byly odCHMU ziskany nésiéni sumy srazkovych thénmeéiené radaroy
také pro rok 2008. Wuzitim radarovychéifani k mapovani kmiho Uhrnu srézek se
zabyva samostatna kapitola 5.

Bodova klimaticka réfeni byla interpolovana do prostoru pomoci vicenadotegresni
analyzy a korigovana lokalni interpolaci reziduiezZdvislé veliiny byly odvozeny z
z globalniho digitalniho modelu terénu (DEM) Sp&teittle Radar Topographic Mapping
Mission (SRTM). Jako nezavislé vghy v teplotnim regresnim modelu byly na zaklad
statistickych test vybrany d¢ veliciny, nadmdska vySka a ze#pisna dtka. V piipad
srazek byly z celkového ptu 28 nezavislych valin vybrany ¢tyii: nadmdska vyska,
zemepisna dka a délka, a valina ZxW25 charakterizujici terénnfgkdzky ve srru na
zapad do vzdalenosti 25 km. Pouzity regresni mpaehérné teploty vykazuje silny vztah
s nezavislymi vetinami (F=0.90-0.97 a &dni chyba RMSE = 0.40 °C) a model
srazek uspokojivy vztah s nezavislymi velami (R=0.78-0.92, RMSE = 106 mm).
Diky pouZzité metod umoiiuje tato prace hlubSi pohled na zavislost klimatuopografii

v Ceské Republice.

Rozdily pameérnych teplot vzduchu a srazek mezi jednotlivymi yola také jejich

odchylek odctyricetiletého normalu, jsou nejlépe patrné z animgeanmap. Vysledné

klimatické vrstvy byly zvéejrény interaktive pomoci UMN MapServer a Sablony
ka-Map.
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1 Introduction

Spatial modeling of climate variables is of widéerest since many other environmental
variables depend on climate. Climate maps are me@dalisciplines related to Earth
Sciences such as hydrology, forest managementudtgiie, ecology, urban environments,
energy, and climate change. [31, 37] These enviestal disciplines use spatial
information of climate as a basis for understandimgprocesses they study. Climate does
not only influence the environmental disciplinesit lalso affects whole economies of
many countries and the lives of their citizens, mhain planning and management of all
logistics involved in transportation of people agabds. [16] Therefore, the monitoring

and analysis of climate and weather conditionsbEhbeneficial to many areas.

There is a need for detailed continuous climatéases in digital form. [38] Daly et al.
introduce the discipline called geospatial climatpl ‘the study of the spatial patterns of
climate and their relationships with geographic tdess’. [15] As the climate
measurements are typically point source in natumee of the challenges facing
meteorology is the interpolation of point climatgical phenomena across a wide spatial
domain. [8] Accurate climatological data are caiet at meteorological stations (in
further text often referred to as ‘stations’), whiare discrete point locations in space.
Values at any other point must be derived from iedging stations or from relationships
with other variables. [31] The method of spreadiigrrete measurements over an area is
called spatial interpolation. Various interpolatiorethods have been taking into account

geographic information by using Geographic InforioatSystems (GIS).

Over the last decade, the use of GIS in a variégpplications involving the processing
of climatological and meteorological data has rpidcreased. Climatological datasets
can be displayed in GIS in a variety of ways, fearaple: rainfall measurements as point
features, rain radar as rasters, and isolines ange In weather forecasting, GIS has
become a key management component in weather pingesystems allowing

instantaneous plotting, interpolation and animatiénwveather data. [8] GIS are no more
used only as spatial visualization facility, butvbaevolved into powerful management
tool used for capturing, modeling, and analyzincgatisgh data. Climatological and

meteorological phenomena are naturally spatiallsiade and hence GIS represent a

useful solution for the management of vast clindatasets.



As the climate and geography are closely relataed, @an study this relationship and then
use it to model the climate. The geographic infdramaoften comes from digital elevation
model (DEM). DEMs have enabled good estimates oar@a’s climatology without the
need of extensive weather records. [8] DEMs wesdlitionally derived using land
surveying techniques but are now determined remaigihg radar, e.g. the Shuttle Radar
Topography Mission (SRTM). SRTM captured topograptiata for 80% of the Earth’s
land surface at a resolution of up to 30m. [8] Riatyosensed DEM are manipulated into
GIS and can then provide a baseline for climatalaigdatasets. Remote sensing has also
provided other inputs in climate modeling, suchN&3VI (normalized vegetation index)
and LST (land surface temperature), which have hesad as independent variables in
regression models to enhance local differences] R8mote sensing enables the
acquisition and calibration of comprehensive ddtasenereas GIS provides a standard
means to display, overlay, and combine the datariatysis, which makes remote sensing
and GIS intimately related. For example, studiegarding the urban heat island
phenomenon integrating remote sensing data withaSsgss how temperature is spatially

influenced by land use. [8]

1.1 Objectives

This study has several objectives: Firstly, to &etbe most suitable mapping and spatial
interpolation method that takes into account geglyal variables, and uses GIS
techniques to obtain maps of different climatolagjicariables over a relatively large area
of the whole Czech Republic (CR). This study inwital explore the utility of regression

analysis, which allows the studying of topograpimituence on spatial climate patterns.
The next sub-objective is derived from the integpioin technique applied to create the
cartography. It is to investigate and select megfoingeographic factors, which play an
important role in annual mean air temperature amtipitation modeling in the area of

CR. The second obijective is to evaluate the usad#r data in precipitation modeling. The
third and last is to publish the results in an riatéive manner on the Internet using a

MapServer.

Resulting maps will show the annual change in meatemperature and rainfall patterns
over the past twelve years and more importantly,récent years will be compared to the
long-term 30-year mean (normal) for both climateafales, which can provide an insight

into the problem of the climate change.



2 Literature Review

Chapman and Thornes [8] review the role of GlSimatology and meteorology by discussing
methods used to derive and refine factual climgtodd applications in various disciplines: In
agriculture, there is massive potential for ‘agroatic’ modeling in order to predict yield by
combining maps of soils, nutrients, climate, weatsieess, fertility, etc. In hydrology,
measurements of precipitation are an obvious rgagioint for many hydrometeorological
models including floods. The opposite extreme @wding is modeling the distribution of
droughts, which can be used for fire alert systémfarestry, GIS is used to model and monitor
the spread of forest fires via the combinationliofiatological and remotely sensed imagery. In
ecology, biodiversity modeling has been succegsagplied in studies such as distribution of
plants with respect to rainfall. In urban enviromtse climatological data can provide
information regarding pollution, but is mostly dited at studying the urban heat island
phenomenon. In energy, temperature and humiditythergorimary factors controlling energy
demand. For example, GIS has been used to aiddhtohs of wind farms by modeling wind

energy potential. [8]

All of the environmental disciplines above are po#dly subjects to the impact of climate
change. Hence, the assessment of the effectsnoftelichange is truly a multidisciplinary
exercise of which GIS provides a fundamental ungyiole. GIS has become a processing and
visualization tool for climate models. Such modekn predict the global impacts of

hypothesized climate change scenarios. [8]

The broadest group of studies regarding temperatdeprecipitation modeling starts from the
premise that altitude and elevation explain moshefspatial variability but proceed to evaluate
other factors such as terrain attributes (aspeth@rphology of the relief), atmospheric factors
(humidity and wind) and maritime factors (distaficen coast and effects of sea currents). [11]
The second group of studies addresses the maxirfiicianey of statistical and geostatistical

interpolation techniques. For example, Hutchins?®] develops a method called thin-plate

smoothing splines which is then used in works @fdreand Hayhoe [29] or Hijmans et al. [25].

Many studies dealing with modeling of climate areuing on mountainous regions [29, 31, 46,
50], where climate variables are difficult to petdilue to the topographic complexity which
generates microclimate environments. [15] SquinesMcNab [45] as well as Marquinez [31]

claim that interpolation using traditional techrégu(IDW, kriging, etc.) is not accurate enough

especially in mountainous regions.



Vincente-Serrano et al. [50] provided a comparatwelysis of interpolation methods
applied to annual precipitation and temperature Jtdudy was carried out in the north east
of Spain in a valley where geographic and spatiahate diversity is significant.
Interpolation methods tested include: global intéajors (trend surfaces and regression
models), local interpolators (Thiessen polygonsjeige distance weighting, splines),
geostatistical methods (simple kriging, ordinarygkrg, co-kriging, etc.) and mixed
methods (combined global, local and geostatistio@thods). Vincente-Serrano et al.
obtained the best results using geostatistical oasttand a regression-based model. The
authors concluded their study by stressing out itin@ortance of testing various
interpolation methods before the most appropriateee for a given area and climatic

variable is selected.

Goodale et al. [20jnterpolated temperature and precipitation in hdldoy means of
polynomial regression, using latitude, longituded altitude derived from a 1km DEM as
predictors. Guler et al. [22] used a simple linemression to assess spatial climatic layers
at finer spatial resolution of 250m in Samsun, ByrkGyalistras [23] developed a 50-year
(1951-2000) dataset for Switzerland. His approadn Mmodeling mean monthly
temperature and precipitation is a method calledREUHY (analysis using relief for
hydrometeorological applications) and is based ramcypal component analysis and 5 km
DEM. Unlike other studies, he did not consider meafues, but rather presents the
amplitudes of climatic variables. Brown and Comnwdeled winter temperature and
precipitation in Arizona and New Mexico, USA foretlperiod 1961-1990They used
regression models at 1 km resolution and krigind@®W interpolation to account for

model residuals. [6]

While most of the studies focus on one countryra cegion within one country, Agnew
and Palutikof [1] constructed maps of mean seasenaperature and precipitation for the
whole Mediterranean on a grid of 1km spatial resoftu Their regression-based approach
included longitude, latitude, elevation, distancel airection to the nearest coast, slope,
aspect, and the ratio of land to sea. Hijmans.428] created global monthly precipitation
and temperature surfaces at 1 km resolution.

In the CR, the Climate Atlas of Czechia was puldishin 2007 by the Czech

Hydrometeorological Institute (CHMI) in cooperatiaith experts from the Department of

Geomatics at the Palacky University in Olomouc. Atlas is a paper book compilation

comprising over 300 maps and presents resultsraf-ferm (1961-2000) climatological
4



measurements divided into 11 sections. Horizorgablution of the maps is 500 m. The
authors use a regression approach to create sedcélitive stations’ in order to have
sufficient spatial density of observations, whi¢teyt then interpolate with the IDW or
kriging interpolation. They also consider lineamgmession for variables significantly
dependent on elevation. Mean temperature for exampk calculated from 311 stations.
[28] More information about data processing in @lenate Atlas of Czechia can be found
in [10]. Authors of the Climate Atlas of Czechiamtien a warming trend of about 0.03 °C
per year based on annual average temperature ret®6&—-2000. [48] Although the Atlas
is so complex and well presented, it is only awddan hard copies and at large scales
from 1:1 000 000 to 1:5 000 000. One of this tHesigectives is to publish resulting
digital maps on the internet, in a similar wayrashie Digital Climatological Atlas of Spain
at http://opengis.uab.es/wms/iberia/mms/ . Another objective is to produce

up to date maps for the recent years, which carobgared to the long-term normals.

The work of Ninyerola et al. [36-38] is seen as Keg study regarding this thesis. The
reasons why are further described in sections 214d12.1.2.

2.1 Mean Air Temperatures

An exhaustive comparison of eight different intdghon methods for temperature

estimation can be found in a conference paper By Eollins. [12]

Ninyerola et al. present a mapping technique of ttlgrand annual mean temperature
over the entire Iberian Peninsula. The spatialrpaiation method is based on multiple
regression (statistical global analysis) with raaildcorrection (local interpolation). This
method allows exploring the relationship betweeimatic elements (such as mean air
temperature) and independent geographical variaBkeshe most accurate interpolation
technique they find the multiple regression witlsideals interpolated using IDW. The
authors not only test various interpolation techei but also compare global versus
regional models. Ninyerola et al. claim that thetbesults for the entire peninsula are
obtained when the model uses all stations together not only regional subsets. The
authors use altitude, latitude, continentalityasohdiation and a cloudiness factor as the
independent geographical variables, which are eddbd from a 180 m resolution DEM.
Ninyerola et al. describe this method as both epgliand statistical. Empirical, because
it uses data obtained from stations for building for validating the model and statistical,

because it is based on a multiple regression asaysl its corresponding validation. The

5



authors believe they created a ‘very simple, usafal realistic model'.

Luis Rodriguez-Lado et al. [41] proved that mukipkgression with residual correction for
mapping air temperature of the State of S&o PauBrazil at 0.5 km spatial resolution is
an accurate method. Claps et al. [11] modeled niprethd annual mean temperatures
based on 1 km DEM using linear multivariate regmsanalysis, a technique very similar
to Ninyerola’s. Significant variables were altitydatitude, distance from the sea and

terrain concavity. For the interpolation of residy@rdinary kriging was used.

2.2 Precipitation

Daly et al. [15] introduced in USA well establisheelgression model called PRISM

(parameter-elevation regression on independeneslaomdel), which had been developed
at the Oregon State University. It is a knowledgsdd system, which combines the
strengths of both human expert and computer basdidtieal methods. The model uses a
weighted climate-elevation regression function Wwhétresses out the dominant influence
of elevation on climate. Aspect and topographicosxpe are also accounted for in the
PRISM model. The maps including gridded datasete awailable online at

http://www.prism.oregonstate.edu/

Basist et al. [3] developed statistical relatiopshbetween topography and mean annual
precipitation for ten distinct mountainous regioasound the world. Among the
topographic variables studied, exposure to the giieg winds was the single most
important feature. Sun at el. [46] carried out dtivariate regression analysis combined
with residuals correction to predict precipitatiorthe Daging Mountains, Inner Mongolia
in China. For the multivariate regression analysiey used five topographic factors:
altitude, slope, aspect, longitude and latitudeairthird-order polynomial regression
equation. The topographic factors for the areaboin 9300 rwere derived from a 100 m
DEM. To obtain residuals for correction, they usedinary kriging interpolation method,
which, according to the authors, did not signifitmmprove the prediction model. Their

prediction model explained approximately 73% oftepaariability of precipitation.

Ninyerola et al. [37] developed monthly precipitatimaps in the Iberian Peninsula at
200 m spatial resolution with the use of multipkgression combined with residual

correction method.



Throughout the literature the following independeatiables are found significant for

precipitation prediction:

= Ninyerola [37] uses 5 variables to map monthly pmiation of the lberian
Peninsula: altitude, latitude, continentality (diste to the nearest coast), terrain
curvature, and solar radiation.

» Vincente-Serrano [50] studies a large number ofabées (many of them they
created by calculating the mean value within radli2.5, 5, 10, and 25 km) in his
comparative study of in the middle Ebro Valley ipa#, four of which are found
significant predictors: maximum altitude within adge (in the North direction),
latitude, latitude x continentality, and altitudaaothed to 25 km.

» Basist [3] introduces exposure to the prevailingds, exposure x elevation and
slope x orientation.

* |n addition to the variables already mentioned, égnand Palutikof [1] use

direction of the nearest coast, a land to sea, rasijpect, and slope.

2.3 Remote Sensing

Since imagery from weather satellites such as N@QAMODIS as well as satellites such
as Landsat is easy accessible, Cristobal et gl.if¥/8stigated the combination of remote
sensing and GIS data in air temperature modelihgyTwere working at regional scale
(looking at Catalonia, Spain) at various tempomdotutions (daily instantaneous and
mean, monthly, and annual). The authors found lmattthe most powerful remote sensing
predictors for air temperature modeling are lantese temperature (LST) and normalized
difference vegetation index (NDVI). Although thetlaors proved the significance of
remote sensing predictors, the overall improvemeétit regard to the geographical model
was modest, only 0.1 °C. Florio et al. [19] alspaged an improvement of only 0.06 °C
when remote sensing variables are introduced inatfaysis. In respect to these small

improvements, the idea of using remote sensingigwtork was rejected.



3 Materials

3.1 Study Area

The Czech Republic (CR) spreads out in the tempechtmate zone of the northern

hemisphere. It is located in the center of Europetween approximate longitude
coordinates 12.09 °W and 18.86 °E (~500 km), artd/dxen latitude coordinates 48.55 °S
and 51.06 °N (~285 km). CR shares borders with @agmAustria, Slovakia, and Poland
and occupies the area of almost 79 00G.KRne altitudes range from 115 m to 1602 m
above the Baltic Sea level. Official terrestriattography is in Krovak’s conic projection,

however all cartography has been projected intdXh® cylindrical projection. The area

falls into the 33N zone. [35]

Topography of the Czech Republic
s and Weather Stations

18°0E

50°0'N

Altitude [m]

I 159
I 1250
- 1000 Meas uring Stations Kilnmatars
1] 25 50 100

- 750 ® 2 Meteorological Stations ettt Projection: W& S84 UTHM Zone 33N
B oo + 132 Meteorological Stations (2008) amost MULLER, 22022010

Data Sources: USGS, ESRI Data & Maps 2006,
- 240 4 Radars Czech Hydrometeorological Ingtitute (CHMI)

Figure 3.1: Study area with classified DEM and noetéogical stations including two radars

3.2 Climate Characteristics of the Czech Republic

The natural environment of CR is characterized byaerate, humid climate and four
altering seasons. The complexity of the climatéhef CR is related to its orography. Mean
altitude is 430 m [47], however mean altitude aledi from the SRTM DEM is 450.7 m.
The higher value derived from the DEM is probaldyised by vegetation cover and urban

settlement, which are reaching above the Earthifase. Nevertheless, variation in altitude
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has larger influence on both climate and weathethm Czech Republic. There are
approximately 67% of total area in altitudes lowean 500 m, 32% between 500 and
1 000 m and only 1% higher than 1 000 m. [47]

The climate of the Czech Republic is influencedbmgh the continental and the ocean
climate. The elongated shape along thd" S&itude results in a slight increase in
continentality towards the East. Higher contineimtiuence with east or north-east winds

causes warmer, dry summers and stronger, coldeemsirj47]

Precipitation is characterized by substantial spand temporal variability. During the
winter precipitation is mainly linked to passingtital systems and pressure lows, and is
characterized by lower intensity and longer duratiburing the summer, precipitation is
usually shorter duration and higher intensity. Bpatial differences of precipitation are
amplified by orographic effects, such as increagimgcipitation total with increasing
elevation and the effects of exposure, where wawmnfy sides of the mountains receive
higher rainfalls than leeward slopes. [48] Accogdito the Climate Atlas of Czechia,
south-westerly and westerly winds are the mostueet; In Moravia, the most frequent
wind direction is northwest and in some cases reotith, because it is modified by the

terrain. [48]

3.3 Data Sources

Data come from several sources: Czech Hydrometegical Institute (CHMI), United
States Geological Survey (USGS), Environmental 8ystResearch Institute (ESRI), and
ArcDATA Praha.

3.3.1 Climatological Data

Temperatures, precipitation, and sunshine duratrenthree basic climatological variables
measured at meteorological stations. Most of thgiagions in the Czech Republic are
operated by employees of the CHMI or volunteers) wiovide their data to this institute.
The CHMI belongs to the Ministry of the Environmeoftthe Czech Republic. CHMI

operates 209 climatological stations (including@8fessional synoptic weather stations)
and 585 precipitation stations (situation in Jap008). See a map of the climatological
stations athttp://www.chmi.cz/meteo/ok/images/st_cz.gif , Where dark

blue squares stand for professional stations, libé for automatic, red for basic and

khaki green for military operated stations.
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Figure 3.2: Meteorological stations (22 in datageaind 132 in dataset B) and two radars

Three datasets were obtained from CHMI:

A) 22 meteorological stations, whose monthly andual data for the years 1998-2009
and one long-term 30-year period (1961-1990) areblighed online at
http://www.chmi.cz/meteo/ok/infklime.html . In fig. 3.3 below there are
23 stations because of the fact that station ‘Vé&lkelovice’ was replaced by ‘Kobyli’ in
2009. This fact is further discussed in the sulise&.3.1.1.

Annual means for mean temperatures (MT) and pratipn (P) were copied into a
spreadsheet. Tab 3.2 shows the distribution oRhstations with altitude. Just 22 stations
for the area of almost 79 000krand for about 1500 m variation in altitude arerextely
sparse coverage (see tab. 3.2 and fig. 3.2 fottitotaf the 22 stations). This dataset

comprising 22 stations is further referred to agadet A'.

B) 135 meteorological stations with annual datalie year 2008. Although CHMI claims

to provide data for academic purposes free of &afijer negotiations in September 2009
only the year 2008 with 135 stations was obtainmed iform of a spreadsheet. Free of
charge, but with no guarantee. This ‘dataset Biésefore used for the purposes of testing,

evaluation and accuracy assessment.

C) Monthly radar rainfall sums for 2008. Refer tmpter 5 for detailed data description.
10



Table 3.2: Characteristics of 22 met. st

Table EBaracteristics of 132 met. st.

Mean ALT 449 m Mean ALT 453 m
Median of ALT 379m Median of ALT 401 m
Maximum ALT 1322 m Maximum ALT 1328 m
Nr. of stations 5 Nr. of stations 48
higher than 500m higher than 500m

Nr. of stations 2 Nr. of stations 5
higher than 1000m higher than 1000m

Area per station 3591 Km Area per station 598 Kn

Table 3.4: Nr. of stations in altitude
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Figure 3.3: Station distribution with altitude (Z2ations)
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Figure 3.4 : Station distribution with altitude (23tations)

3.3.1.1Missing Data

In dataset B, there were two stations with no Mdords and one station with no P record.

Those three stations (stationsH4SLATO1 Slatiny,
H3CHTUOL1 Chotusice, all highlighted in red\input_data\2008.xIs

attached) were therefore removed and the
stations.
11

O3HOSTO01 Hostalkova, and
on the DVD
numbstiabbns was reduced from 135 to 132



Regarding dataset A, station ‘Velke Pavlovice’ veasit down in November 2008 and a
new station ‘Kobyli’ started observations in Jaryu2009. In order to preserve consistency
and to have the same number of monitoring statmnefich year, two MT and two P

monthly records needed to be interpolated for dlsétiwvo months of 2008 to obtain annual

values/sums.

MT records were interpolated using linear regresgi®REND’ function in MS Excel)

with ALT as the independent variable. Data tabl@dsuded in Appendix 1.

8 3
7 y =-0.0049x + 6.8447 , | e, y=-0.0055x+3.1985
. 3 R®=0.870 ‘*\.\. R?=0.945
o g o 1 *;
|°_| 5 L3 - & —_ o
8 A 0.. § 0 )
2
<5 N c-1 >
= =
= 2 . . = -2 S "
3
1 AW .
0 T T 1 -4 T T 1
0 500 1000 1500 0 500 1000 1500
ALTITUDE [m] ALTITUDE [m]

Figures 3.5a, b: Linear regression between MT ivéober and December and altitude.

Missing P records were interpolated using multatrilinear regression in Geoda software
with ALT, CURV and values of other months as indegent variables. Data table,

protocols, and regression equations are includéghpendix 1.

3.3.2 DEM

Digital Elevation Model (DEM), displayed in fig.®. originates from the NASA Shuttle
Radar Topography Mission (SRTM), launched in ye@0® The mission captured
topographic data for 80% of the Earth’s land swefat a horizontal resolution of
1 arc second for USA (=30 m on the equator). Hortialoresolution of SRTM global
datasets is 3 arc seconds (~90 m along the equé&tar)atitudes of central Europe each
pixel represents a rectangle of 60 x 90 m. Thezbatal datum of SRTM datasets is
WGS84 (geographic coordinate system using latitui® longitude). SRTM is vertically
referenced to the WGS84/EGM96 geoid. [35] ‘The SR{Mbal datasets comprise an
annulus between 60°N and 56°S latitude. The malglabal, because GTOPO30 data
were used to fill in latitudes beyond 60°N and 5&S$well as void areas within the SRTM
data. GTOPO30 is another coarser DEM of 30 arcrec¢~1 km) horizontal resolution
developed by the USGS EROS Data Center in 1996 &reariety of data sources.’ [35]

12
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based on SRTM

s (Shuttle Radar Topography Mission)

i o :
i
. ﬁ I
bl - & & - - g
C sl 1

kg Sl
-4 1
N ‘.‘ J ‘ .‘ .
N e g "‘4

“ .

Hypsometry [m]

High: 1586 iy Kilometers
A 1] 25 a0 100
|

Lo 45

Arnost MULLER, 12022010
Frojection: WGS584 UTh Zone 33N Data Sources: USGS, ESRI Data & Maps 2008

Figure 3.6: SRTM DEM, each pixel contains one vakpmresenting altitude in meters.

Although NASA has already published a ‘finishedrsien of SRTM (version 2 with
interpolated void areas), DEM used in this workhe same as in author’s previous
work [35]. Void areas contained in SRTM version dre/filled in by ESRI and the DEM
used in this thesis was downloaded from ESRI DataMaps 2006. The DEM came in
decimal degrees in WGS84 datum. It needed to beectad to UTM coordinates in
meters to allow some calculations such as curvaiuolar radiation. The conversion
was performed using the ‘Project Raster’ tool it@IS toolbox by selecting bilinear
interpolation. Bilinear interpolation is suitablerfcontinuous data (such as elevation
surfaces) and determines the new value of a cetiban a weighted distance average of
surrounding cells [17]. The default output cellesiwas kept on the default value of
61.94 m. This value was the most similar to thes ¢ the original grid in that the
number of cells in rows and columns of the newerastmained more or less the same.
All calculations including interpolation are thealaulated at 61 m grid. The resulting

climate surfaces, however, are resampled to 90 envahow pass filter is applied.
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3.3.3 Variables Derived from DEM

In complex terrain, climatic patterns are delinddig topographic slopes and barriers. [15]
Several variables which appear throughout the sfieerliterature to be significant
predictors of climate were derived from the DEM AncGIS: Altitude, slope, aspect,

curvature, solar radiation, maximum altitude inedge and UTM coordinates X and Y.

3.3.3.1Altitude (ALT)

Climate varies strongly with altitude. Temperattypically decreases with altitude. [15]
While there is a known empirical relationship betwaemperature and elevatidhq °C
per 1 km increase in elevatipfR0], precipitation also generally increases wathvation,
but the relationship is not that straightforwar@1][ Altitude is an excellent statistical
predictor, because it is sampled at greater spdgiagity than climate variables in a form of
a regular grid — DEM, in our case 61 m (refer totise 3.3.2). [15] The strong relationship
between altitude and climate has been utilized ianyn scientific studies, e.qg.
[1, 35, 36, 50].

Daly et al. [14] describe the orographic effects aititude: ‘The relationship between
precipitation and elevation varies from one slogeefto another, depending on location
and orientation. Relationships between measuredpit@ion and elevation are sometimes
strengthened when the elevation of each data p®igiven in terms of its height on a
smoothed terrain.’ As suggested Daly, smoothed #LT, 5, and 10 km was therefore also

tested in the precipitation model selection process

3.3.3.2Slope (SLP)

Slope (fig. 3.7) characterizes the steepness diterThe ‘Slope’ tool of ArcGIS calculates
the ‘maximum rate of change from a cell to its héigrs’. [17] The effects of slope on

climate are often combined with aspect and areefbex explained in the next section.
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3.3.3.3Aspect (ASP)

Aspect (fig. 3.8), the direction of slope, was cédted in ArcGIS using the corresponding
function of the Spatial Analyst Extension. Valué<b face to the North, values of 90° to
the East. Slope orientations typically affect theoant of sunlight received, which directly
influences MT. In the northern hemisphere placeh southerly aspects tend to be warmer
and drier than places with northerly aspect. [13,As humid air sweeps up the slopes of a
mountain range, the air cools, and clouds form.nEaly, rain or snow falls from the
clouds. The rainiest places are usually those gattie wind (called windward slopes). As
winds blow down the opposite slopes (leeward slppee air warms, and clouds tend to

vanish. Leeward slopes of mountain ranges areftiverdry. [34]

3.3.3.4Curvature (CRV)

Curvature (fig. 3.9) is the second derivative & gurface, in other words the slope of the
slope. A value of 0 indicates the surface is fgpositive curvature indicates the surface is
upwardly convex at that pixel. Convex parts of soes are typically ridges, generally
exposed and drain. A negative curvature indicdtesstirface is upwardly concave at that
pixel. Concave parts of surfaces are typically cledsor valleys. The values between +0.5

represent moderate relief, while values over +4asgnt extremely steep relief. [17]

3.3.3.5Solar Radiation (SOLRAD)

SOLRAD was used by Ninyerola as a predictor in Mddeling. [36] Solar radiation
model contains topographic information (slope asgeat) that determines amounts of
incident solar radiation and can influence cloudnfation or wind circulation. [17]
SOLRAD can be calculated for certain year in Arc@iigh the ‘Area Solar Radiation’ tool
(example in fig. 3.10), but the calculation is velgmanding and can take several hours.
SOLRAD further refers to the theoretical value ded from the model.
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Figure 3.9: Curvature with hillshade effect (Z = 2)
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Figure 3.10: Solar Radiation in 2008
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3.3.3.6Maximum Altitude in Wedge (Zx)

The right full term describing this variable sholle ‘the maximum elevation in a wedge
of given aspect and radius’ (ZxDIR&RADIUS), accargito Agnew and Palutikof. They

emphasize that this variable is very useful in singdth dominant wind directions, because
the leeward slopes are drier and warmer than wirdigl@pes. They include Zx variable in

all of the models for predicting seasonal prectjuta

In this thesis, there are 16 Zx variables. Zx idiréctions (W, SW, NW, N, see fig. 3.11.)
multiplied by 4 radiuses of 1, 5, 10, and 25 kmr Egample, ZxW25 is the maximum

altitude in W direction within a 45° wedge with thedius of 25 km (see fig. 3.12). The 4
directions were selected with respect to the dwacbf prevailing winds in the CR.

According to the ‘wind roses map’ in the Climatelast of Czechia, westerly and south-
westerly winds are the most frequent. In the eagiart of the CR, the prevailing direction
is modified by the terrain so that the northwest ansome cases north direction is often
the most frequent. According to Daly, orographiteets influencing precipitation may

operate at relatively large spatial scales, resipgntb smoothed topographic features
rather than detailed variations in terrain, therefthe 4 radiuses were selected. Zx with
greater radiuses of 5, 10, and 25 km were calallatea resampled 1 km DEM in order to

save the time needed for calculation.

In ArcGIS, Zx is calculated using the ‘Focal Stiadis tool, selecting the ‘wedge’ option,
and specifying the starting and ending angle ofitbdge, its radius, and ‘statistics type’ as
‘maximum’. For SW direction for example, the stagtiangle would be 22° and ending 67°
to get the wedge of 45°. This tool looks into sfiedirection and distance and finds the
highest altitude of the DEM. The Zx variable camlate orographic barriers in prevailing
wind directions.

N=270°
NW A
L
W=0° < : E
SW
S=90°

Figure 3.11: Wedge angles with 0 to the West, aniglerease counter-clockwise
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Figure 3.13: YO is the UTM coordinate representiatifude
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3.3.3.7X0, YO

X and Y are location variables. Variable X repreasdatitude and Y longitude. Both are
UTM coordinates expressed in meters. New rasterixma¢eded to be created for both X
and Y. This was done using the ‘Trend’ tool. Asfjra new shapefile with 3 random points
outside the CR borders was created, because S @omineeded to determine a surface. In
the attribute table, each of the three points veaggaed UTM X and Y coordinates using
the ‘Calculate Geometry’ option. Linear trend sadgavas then fitted through the X or Y
values with specified output cell size matching DEM (61.940m). In order to obtain
reasonable coefficient numbers in calculationsegfessions, minimum values of X and Y
were subtracted from each cell using the ‘Rastéculator’ and so were X0 (eq.3.1) and
YO0 (eq.3.2) created.

X0= X — 292684.937(Xmin) (3.1)

YO=Y - 5377820.5(Ymin) (3.2)

3.3.4 DBF files

Input data tables were obtained from CHMI and fdtethin MS Excel spreadsheets
(\input_data\2008.xIs on the DVD). The problem was that MS Excel doet no
support DBF database files which can be importénl AncGIS. XLS files were opened in
Open Office Calc and saved as DBF files with thest&a European encoding (both
Windows-1250 and ISO-8859-2) or UTF-8 but neithértltem worked correctly in
ArcGIS. Displaying the imported DBF file as a pogfiapefile in ArcGIS is done with the
‘Display XY Data’ function, by selecting the appriie X coordinate (longitude), Y
coordinate (latitude) and the geographical datumS84 Point shapefiles with attribute
tables filled in with independent variables infotioa are also included on the DVD in the

geodatabase.

3.3.5 ArcCR 500 v. 2.0a

The dataset AKER 500 version 2.0a was obtained from ArcData Pralna, free of charge
for academic purposes in 2007 for the author’s BExhThesis. Shapefiles containing
administrative regions of the Czech Republic, svand streams, water bodies, and all
cities were used to extend the spatial contexesiilting climate maps. The dataset came
in WGS84 and was also converted to UTM Zone 33N.
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4 Methods

Accurate climatological data are collected at melegical stations, which are discrete point
locations in space. Values at any other point festerived from neighboring stations or from
relationships with other variables. [31] The metlobdpreading discrete measurements over a

continuous surface represented by a regularly spgrietis called spatial interpolation.

Methods of mapping climate from point data falloirtvo categories: human expertise and
statistical. The first group is based on human eepee and knowledge and involves manual
preparation of climate maps often related to togoigic analysis. Statistical methods use a
numerical function, calculated or prescribed, toeag irregularly spaced point data to a
regularly spaced grid. [15] Various statistical hoets have been developed to predict the

spatial distribution of climate variables:

4.1 Global Methods

Global methods include all sampling points, in ttese all weather stations, in calculations.
Global methods use external information, e.g. tomaigic data, to create dependence models
between the external (independent) variable andribdeled (dependent) variable, which is
typically done by a polynomial function or by theeams of simple or multiple regression
models. The underlying hypothesis is that climateay location is influenced by the
environmental attributes of the surroundings. Téseggaphical variables of the weather station
(typically coordinates - latitude and longitudestdnce to water bodies) or topographic
variables (e.g. elevation, aspect, and slope) sed as independent variables. The value at an

unsampled point is predicted by the following fume{50]:
z(x) = Bo + P1Py + 2Py + -+ + BuPy 4.1)

wherez is the predicted value at poixtSy-5, are the regression coefficient aRgdZ,are the

values of independent variables at pointSimple linear regression (with one independent
variable) fits a regression line (example fig. 8tSig. 5.9). Multiple regression determines a
regression surface using least-square estimatimibaGmethods are inexact interpolators in

that the values predicted do not coincide withréa observations of weather stations.

The relationships between climatic and independeagraphic or topographic variables have
been extensively studied in the scientific literatlLinear regression was used in the following
works [22, 35] , and multiple regression was us€d.j 20, 36]. All of the above studies reveal
elevation as the most important predictor in tistridiution of weather data.
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4.2 Local Methods

In contrast to global methods, local interpolatamyy use the data from the nearest sampling
points (weather stations). First, a number of weragkations are selected. Prediction at a given
point is done by a mathematical function which tallata from the selected stations. Local
interpolators are exact methods, as predictionscm® with the measured values. [26] Local
interpolators such as inverse distance weightiiyM), Thiessen polygons or thin-plate
splines [25, 26] have also been used for climatepmg, but are nowadays used as additional
interpolators in combination with a geostatistmagjlobal interpolator, as described in sections
2.1.1 and 4.4.

IDW is a simple statistical method based on therapsion that the value at unsampled point
z(x) is a distance weighted average of the climaticesat selected sampling poizts),
z(xz2),... z(xy). The distancedyis the weighting factor, because climate valuesrageneral

more alike between closer points than betweenrdiptaints. [50] The IDW formula looks as

following:
Yroz(x) xd;”
2(x) = e 4.2)
j=17ij
wherer is the power parameter (positive, real number2 by default in ArcGIS). The

choice of power parameter can significantly afféset interpolation results. As increases,
‘IDW approaches the nearest neighbor interpolatieethod where the interpolated value
simply takes on the value of the closest sampletipsiays Collins. [12] In other words, the
exponent provides the possibility for the userdwotiol the significance of known points on the

interpolated values. [18]

The next local interpolation method is splinesirigd algorithms are mathematically complex,
but are standard in current GIS. For eagh), a new function is created according to the
number of sampling points available in radiu$he predicted value(x) is determined by two
terms [50]:

z(x) = T(x) + Xitg i X (1), (4.3)
where 7(x) is a polynomial smoothing term and the sum costaigroup of radial functions.
Splines assume smoothness of variation. Splines theevadvantage of creating contour lines

which are visually appealing, but may mask unaetggresent in the data. [12]
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Thiessen polygons, also called nearest neighbionp)ystake the value of the nearest point
where climatic information is available. The ressla polygon network with abrupt spatial
discontinuities in the values when passing from polggon to the other. [50]. Therefore, it
is not an appropriate interpolation for variableshwgradual spatial variation, such as

climatological variables which are the subjectro$ thesis. [5]

4.3 Geostatistical Methods

Kriging is a group of geostatistical methods wha$sume that the spatial variation of
continuous climatic variable is too irregular tornedeled by a mathematical function, so
prediction by a probabilistic surface is proposestead. [50] The climatic valueat point

x can be expressed by the following formula [5]:

z(x) =mx) +&'(x) +&" (4.4)
wherem(x) is the drift component which represents the stmattvariation of the climatic
variable,&’(x) are the residuals, the difference between the anift the original sampling
data values, while”(x) are spatially independent residuals. Kriging meshae based on
a weighted average of the data available inrtheeighboring stations. The weights are
chosen so that the calculation is not biased amn@e is minimal. [50] This is done
through a semivariogram model that best fits thta daee fig. 6.3). [14] Examples of

works where kriging is used to interpolate residwak [1, 6, 46].

4.4 Combined Methods

Global methods are not exact interpolators, siheepredicted value does not equal the
value recorded at the station. The known error ifierence between the two values is
called a residual [50]:

residual = observed data — predicted data (4.5)

Combined methods generally use a global methogfediction and a local method for
interpolation of residuals. The later method isfast a correction used to obtain exact

climatic data at the measured locations [50]:
observed data = predicted data + residual intatjooi (4.6)

The correction interpolation increases the prenisiecause it accounts for some of the
remaining spatial variation hidden in the residu@lembined methods were successfully

applied in the following studies [1, 38, 50].
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4.4.1 Multiple Regression with Residual Correction

The combination of statistical (multivariate regies) and spatial interpolation (IDW,
spline, or kriging) has been demonstrated to becg¥e in MT and P modeling in the
scientific literature [1, 36-38, 50]. The main posp of this work is to investigate the role of
multiple regression analysis with the residual @ction method in climate modeling in CR.
According to Burrough and McDonnell [5], this methis scientifically interesting because,
in addition to the interpolation process, it givermation about the relationship between

the geographic reality of the land and climate. Eig illustrates the whole process:

Stage |: Developing the regression model

Terrain variables‘ ‘ Location variables‘ | Climate variables

l

=|| Regression mode%:

Stage II: Estimating and

refining the climate surface

add residuals

A\ 4

Interpolate
residuals using
IDW

A

Predicted surface

Figure 4.1: Two-stage methodology for constructiggeline climatologies [1]

The input data has following characteristics: toppbical data as independent variables are in
the form of rasters while climatological data apetelent variables are point features.
Multivariate regression models are calculated indaesoftware. Backward stepwise approach
and t-statistics is used for choosing significardependent variables. Backward stepwise
selection begins with the examination of the comtireffect of all of the independent
variables on the dependent variable. One by odependent variables (usually starting with
the weakest predictor) are removed based on soisetaeriteria (t-statistics), and a new
analysis is performed. [30] One should avoid thssfmlity of any of the variables being a
linear combination of another variable. The goathef backward stepwise approach is to find
the combination of independent variables when &dgRhaximized. On the other hand, since
there are only 22 observations (dataset A), 4itmi&pendent variables will be the maximum,

because the more variables are included, the ligvilee degree of freedom of the model.
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One final model is then selected for MT and one RorPutting in the regression
coefficients fy) into ‘Raster Calculator’, prediction maps calfpdtential maps’ [36] are

created. Predicted values were extracted from gtiedimaps at weather station locations,
then subtracted from observed values and so wsidugd values obtained for each station.
Residual values are interpolated into a rastergudVV interpolation in ‘Spatial Analyst’.

Residual surface is then pixel by pixel added te hotential maps using ‘Raster
Calculator’. Ninyerola calls these residual surfaw®rrector maps’ [36]. ‘These corrector
maps will not be uniform, but they will show maximuvariability in the more

unpredictable areas, and minimum variability in thedictable sites. In this sense,
corrector maps can be seen as anomaly maps, dfigre@st to reveal the singularities of
the climate at the local scale. The most unpreblietareas are usually correlated with

rugged zones.’ states Ninyerola.

4.4.2 R? and Adjusted R

How well the model predicts is described by therelation coefficient R also called
coefficient of determination. It determines the doess of fit of the model. In the case of
linear regression this would be how well the lipp@ximates the points (see fig. 3.4 or
5.9 for illustration). In case of multivariate regsion, R is calculated using the
determinant$R| and|Ry| of the correlation matriR. |R| is the determinant of the whole

matrix, while|Ry| is the determinant of the matrix without the firgtv and column. [24]

IR|

4.4.3 Fisher’s F-test

Fisher’s F-test can test the overall effectivengfsthe regression model, but it does not
advise whether all of the independent variablessayeificant, if more variables should be
included or some excluded from the analysis. [24¢d% is calculated as the ratio of two
variances. In Geoda, F-statistic tests the nulbtiypsis that all regression coefficients are
jointly 0 and gives the associated probabilityeBtwill typically reject the null hypothesis

and is therefore not that useful. [2]
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4.4.4 Student’s t-test

Student’s t-test in case of multivariate regresgimvides a measure of significance of an
independent variable. It helps to analyze the witjrioup variation and to decide which
variable are to be excluded from the analysis. figher the t-statistics value, the more
significant is the variable and vice versa. Fordhality of the model it is better to include
a variable which is not significant (is uselesshea than not including a variable which is
significant. [24]

4.4.5 Protocols of Regression from Geoda

Geoda software developed at the Arizona State Wsitye USA, is used as the primary
software for calculation of multivariate regressidBeoda reads shapefiles as input.
Geoda’s ‘Regress’ tool offers the option to inclutthe full covariance matrix of the
regression coefficient estimates in the output quol and the predicted values and
residuals for each observation. The output pro®o¢m appendix 1 and on the DVD in
\regression_protocols\ folder) contain several statistical characterssiié both
dependent and independent variables. RMSE (see Tab) is in Geoda referred to as S.E.
of regression (standard error of regression). Tkgla@ation of the various statistical

measures based 2] is given below

= The first few lines characterize the dependentaldei (by providing the mean
value and standard deviation) and the model (nurob@bservations, number of

independent variables and degrees of freedom).
» R?and adj-R provide the measure of the goodness of fit oftioelel.

= F-statistics and probability of F-statistics calhwéhether the model is not effective

more than whether it is.

= The sum of squared residual enters the calculaifoSigma-square (which is a
standard error estimate or RMSE in tab. 7.1) agdh&isquare ML. The last one in
the column is S.E. of regression ML (standard eestimate or RMSf in eq.
X+1). The ML index means that the statistical measloes not compensate for the
loss of freedom.

= The area between dashed lines displays the independhriables and their

significance characterized by the t-statistics ¢8ti's t-test) and its probability.
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4.5

The three statistical measures on the right (L&glihood, Akaike Information

Criterion (AIC) and Schwarz Criterion (SC) are uged comparisons across the
various spatial (and non-spatial) regression modeie higher (or less negative)
the log-likelihood, the better the fit. Foetmformation criteria, the direction is

opposite, and the lower the measure, the betteditthe

Below the dashed line there is the multicollingargtondition number. This
diagnostic suggests problems with the stabilitythed regression results. Values

over 30 are in general problematic.

The Jarque-Bera test is usedetaminethe normality of the distribution of the errors.

The low probability of the test indicates non-nothiatribution of the error term.

Limitations

The major limitation of this work is the lack ofghi spatial density of meteorological

stations, as discussed in Data Sources in secitoh. 3

The terrain variables are all derived from a DEMacakhmay contain errors. The accuracy

of the DEM is further analyzed in section 6.

4.6

Delimitations

The author selects to study only two basic clinvatigéables — mean temperatures (MT) and

precipitation (P).
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5 Using Radar-derived Rainfall in Precipitation
Modeling in the Czech Republic

This chapter presents a separate study about tggilag data in annual rainfall modeling in
CR. This analysis was done prior to the whole ®hdbierefore 21 meteorological stations
are used (missing data were not filled) and la&t(idAT) is introduced as an independent

variable instead of YO.

5.1 Introduction

Precipitation, as one of the basic climatic vaeablis essential for life, however, it can
also transform into destructive power. It is usedaa input in various models not only in
hydrologic modeling, e.g. flood prediction, but @l$n agriculture applications for

estimating yields, land management, forestry @tmospheric simulation models.

Rainfall data are traditionally collected at met#ogical stations, which are discrete point
locations in space. These measurements are calledjauges. Rain gauges observations,
although represent only points, are still consideas close to true rainfall as we can get at
present state of art technologies. [27] Valuesrst ather point must be derived from
neighboring stations or can be remotely sensedbg.ground-based radar. Weather radar
has advantages in contrast to other methods. Eissticompasses large spatial domains of
up to 260 km. Second, radar images are acquirideatemporal resolution, for example
every 10 min. Third, radar can ‘see’ much largenagpheric space than rain gauges
located on the ground. Radar can detect the aietlbdtion of precipitation at more
detailed spatial scale than rain gauge network thedefore, the final rain field pattern
should be determined by radar as recommended byewski [27]. Conversely,
precipitation obtained only from radar data canbet directly used because radar
measurements are affected by various types ofsaod the transformation of measured
radar reflectivity into rain rates is far from acate. [27, 44] The solution presented in the

literature e.g. [27, 42, 43] include merging radad rain gauges estimates.

Krajewski [27] presents a brief discussion of thee wf rain gauges in radar-rainfall
estimation and concludes that both radar and raigg networks are equally important.
Sokol and Bliznak [44] study heavy short term ppéation of the Czech Republic at 1h
temporal and 1 km spatial resolution by mergingaraahd rain gauge precipitation [43].

Sokol and Bliznak [2] focus on the precipitatiotitate relationship and conclude that the
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relationship depends on the accumulation periothodr high rain rates are without
apparent dependence on altitude, while longer 23hdurs low and high rain rates are
impacted by altitude. 6-hour precipitation evemgeal influence of the mountains, where

precipitation occurs at larger scale.

The focus of this study is therefore to investighie use of radar data in modeling annual

precipitation over the area of the Czech Repul@iR)(

5.1.1 Aims and Objectives

The broad aim of this study is to explore the useadar data in precipitation modeling.
The secondary objective is to test the influencdotbwing topographic, locational and
atmospheric variables on residual errors: altitYédT), longitude (E_lon), latitude
(N_lat), aspect (ASP), slope (SLP), curvature (CRdfstance from the radar antenna
(DIST), aspect perpendicular to the radar beanrnedeto as directional difference (DIF),
mean temperature (MT), and solar radiation (SOLRARYsidual errors are calculated as
the difference between radar-predicted rainfall amd gauges observations, which are
considered true. If some factors influencing resalderrors are found significant, this
would mean radar errors are not random and thexefan be removed by calibration. The
variables DIST, ALT and DIF are expected to have thrgest influence on radar

measurement accuracy amongst other studied vasiable

5.2 Theoretical Framework

Rain gauge observations are typically used in caibn and validation of radar derived
estimates. The process can be summarized in tteps: $-irstly, parameters of the basic
relationship between radar-measured reflectivitd amnfall rate (Z-R relationship) are
estimated. The second stage involves adjustmetfieofean field bias, which is the ratio
of the true areally averaged rainfall (approximatgdrain gauge observations) to the
corresponding radar-rainfall. The third stage mase uain gauges to locally adjust
radar-rainfall patterns by merging the two setsraffall estimates according to some

criterion, e.g. mean error variance. [27]

Radar images can be imported into a Geographicrrirdton System (GIS), which
provides a standard means to display, overlay,cantbine the data with other layers, e.g.

topographic or climatic, for analysis. [21]
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5.2.1 Methodology

In order to examine the use of radar rainfall dataprecipitation mapping, regression
analysis is applied to determine the relationstd@fwben rain gauges and radar estimates.
Residual analysis using regression approach is #épgtied to study factors influencing
residuals, which can provide insight into radar sae@ment errors. Given the data provided
by the Czech Hydrometeorological Institute (CHMBe analysis is firstly performed for
annual estimates in the year 2008 with 134 statoms secondly at a monthly scale using

gauge data from only 21 stations.

5.2.2 Data Sources
Precipitation data were obtained from the CHMIyfear 2008 in two forms:
1) Monthly radar sums

2) Rain gauges at two temporal scales (monthly andiapmvith a different number of
stations (21 and 134 respectively).

5.2.2.1Radar Data

The Czech radar network (CZRAD), operated by théGHonsists of two polarization C-
band Doppler radars. Optimal location of the radaith respect to topography causes
reflectivity to be significantly influenced by tain blockage of radar echo only in small
areas of the CR. [44] More information about thelara network and instuments’

specification is detailed in [9].

CZRAD - status 2800
Radar cowerages (1588m)

Figure 5.1: Map downloaded frott t p: / / www. chmi . cz/ net eo/ r ad/ ei ndex. ht M showing the
maximum overage of the CHMI weather radars (cifchred the effective coverage for P estimation.
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Monthly raw radar rainfall sums (already combineaini both radars) for the year 2008
were provided by the CHMI in two dimensional RPDnfat. The data are stored in
Cartesian coordinates. The RPD file consists of pads: header and binary data, which

can be decoded in a Linux system environment usimgle commands:

dd if=file.rpd ibs=512 count=1 | tr -d \000' >head er
dd if=file.rpd ibs=512 skip=1 | gzip —d >image

In order to import the image into a raster ArcGi8npatible format, the image file was
renamed tomage.BIL and new heademage.HDR needed to be created (based on the

information provided in the original header):

BYTEORDER |
LAYOUT BIP
NROWS 528
NCOLS 728
NBANDS 1
NBITS 16
NODATA  -9999
XDIM 1000.0
YDIM 1000.0

Using the ‘Raster to Other Format’ conversion tbdlimages were imported into ArcMap
as GRIDs. Each image was then assigned gnomonjecgiom using ‘Define Projection’

tool. The gnomonic projection is defined by CHM®]dy the following parameters:

<pacz23> # ID of projection

# combined information with 1x1km resolution (x_0O, y_Oarein[m])
proj=gnom lat_0=50.008 lon_0=14.447 a=6379000.

Xx_0=301500 y_0=-217500 es=0. no_defs <>

x_res = 728 # nr. of colls

y_res = 528 # nr. of rows

pix_res = 1.0 # size of pixel in the centre of proj ected image in [km]

Radar sum rasters were then transformed from gnimntonUTM projection (based on
WGS84 ellipsoid, zone 33N) in order to be abledxrtract values to points’ from radar

rasters. The horizontal spatial resolution is 11l k
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Monthly Radar Sums of Precipitaion in 2008
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Set of figures 5.2 above: Radar sums by montha(0fo8

Figure 5.3 below: Zoom in to the area where radaaim casts a ‘shadow’ caused probably by different

signal of similar frequency
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5.2.2.2Specific Independent Variables
Apart from variables described in section 3.3.3) tvew variables are introduced.
= DIST (Fig. 5.4)

Distance to the Radar Antennas was calculatedeashibrtest Euclidean distance, using the

function corresponding name.

DISTANCE (DIST) from the Radar Antenna

Distance [m]

I o- :0.000
I :0.100- 60,000
I 0,100 - 90,000

Kilometers

[ o0,100- 120,000 0 25 =50 100
[ 121000 150000 Measuring Stations iy . N

l:l 151,000 - 180,000 + 134 Meteorological Stations jL Fraiecipni: RSB LTI Zonc 330
[ ]181,000- 210,000 o 1 Meteorological Stations Armost MULLER, 25.2.2010
l:l 211,000 - 240,000 A R Data Sources: USGS, ESRI Data & Maps 2008

Figure 5.4: Distance
= DIF, DIF5 and DIF10 (Figures 5.6-5.8)

Directional difference is derived from ASP usingSGlechniques. Difference between

direction to the radar antenna (DIR) and aspecP(AS calculated as

DIF=| cos(ASFDIR) | (5.1)

34



1
’t A M
3 ; 3 2
0.8 ) Fi \‘ R
+ .
1
0.6 5 "‘ .
o M i 3 i
(] + + 4 N
0.4 I % 7
0.2 v 3 [
t Lo
- ‘:
0 T ? T r T
-360 -270-180 -90 O 90 180 270 360
ASP DIR[?]

Figure 5.5: Chart explaining themeaning of the variable DIF

When ASP-DIR =190 or £270, the aspect is perpendicular to the radar beamen
ASP-DIR = 0or #180, the aspect is facing the same direction as tdarrbeam. B
averaging neighboring pixels two additional vareablwerecreated: DIF5 and DIF1(

which represent directional difference for are® aind 1t km, respectivel

DIRECTION of the Radar Beam (DIR)
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Figure 5.6: Direction
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Figure 5.7: Directional Diference
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Figure 5.8: Directional Difference smoothed to 10kesolution
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5.2.3 Atmospheric Data

Since mean air temperature (MT) can be interpolateer large areas with sufficient
accuracy (standard deviation less than 0.1 °C), [BSpuld also be used as an independent
variable in rainfall modeling. However, it shouldtnbe used in models together with

altitude with which it is highly correlated.

Meteorological stations recording rain gauges dbamy record MT, but also sunshine
duration (SD). SD, in addition to solar radiati@OLRAD) is also included in the studied
variables. While SD is a real measured variabld,’S&D is a theoretical variable because
it is derived from DEM. SOLRAD is calculated usiA&P, SLP, and solar angle and does

not include actual information about cloudiness.

5.3 Analysis

Since the aim of this study is to model precipmatiby using radar data, gauge
measurements enter the regression analysis as diggevariable and rainfall sums as

independent variable. The analysis is carried otft two datasets:
1) annual 2008 data of 134 monitoring stations

2) monthly data for the same year of only 21 awdéatations.

5.3.1 Regression Analysis

Using MS Excel or Geoda software, simple linearesgion model was fitted between
radar (independent) and rain gauge data (dependamdples as displayed in scatter plots
in figures 12-14. Geoda software creates a proto€dhe regression calculation with

various statistical measures and includes the uaidoetween the predicted and the real

gauge data, refer to appendix 2.

The scatter plot in fig. 5.9 reveals some relatigmsbetween rain gauges and radar
measurements. The slope coefficient of 1.74 indg#tat radar underestimates the gauge
rainfalls by nearly twofold. When forcing the limeeurve to intercept the [0,0] point, it
increases to 1.94. The relationship is slighthedin but not very strong. The correlation
coefficient for annual data’R 0.18 is low, which means that there is low deesced
between gauge and radar precipitation estimatestatistics reaches 29 with the
probability of 2.7x10 (refer to appendix 2) which indicates that theatiehship is true

and is not the consequence of chance.
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GAUGE vs RADAR
Annual Precipitation in 2008
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Figure 5.9: Gauge precipitation measurements of t&eorological stations plotted against annualaad
rainfall sums over the same location.

One would expect a stronger relationship betweerradar and the gauge data since both
methods measure the same variable — precipitaRadar rainfall integrated in time to
represent rainfall accumulations are typically atid to rain gauge-based areal average of
the corresponding rainfall. [27] The regressionction implies that the radar data are raw
and were probably not calibrated with the gaugesmesments, otherwise one would see a
random noise pattern in the plot, slope coefficegproximating 1 and the regression line
intercepting close to the [0,0] point on the axi$ie slope coefficient is almost 2,

indicating that radar generally underestimatedadiby almost a half.

If stations with residuals higher than 300mm (adbit selected threshold) were removed,
the R would increase from 0.18 to 0.41 (refer to figlGbelow).

GAUGE vs. RADAR
Annual Precipitation in 2008
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Figure 5.10: Gauge precipitation measurements & ti&teorological stations (12 stations with residua
over 300mm were removed) plotted against annuaraginfall sums.
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The scatter plot in fig. 5.11 represents the mgndaitaset. The slope coefficient of 1.4 is
lower than 1.7 in annual data. It is pulled downytations with the highest residuals
lying in the highest altitudes (‘Churanov’ and ‘bBydHora’). However, the correlation
(R®=0.50) is better than in the annual case, wheegetlis more stations situated in

altitudes over 1000 m above the sea level.

GAUGE vs. RADAR
Mothly precipitation in 2008
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Figure 5.11: Gauge precipitation measurements ofr@teorological stations plotted against montlyaad
rainfall sums over the same location.

5.3.2 Residual Analysis

The following analysis seeks to determine if loegat annual and monthly

precipitation can be predicted and modeled usid@raainfall. The residual analysis is
based on the assumption that rain gauge datawed2r7] and not biased, while annual
radar sums of rainfall are not accurate. Furthealyamis focuses on the source and
nature of errors of radar measurement by lookinthatresiduals of the two regression
models, monthly and annual, depicted in figuread@ 14. The analysis is carried out
primarily on the annual dataset with 134 gaugeimtat which is considered more

representative than monthly dataset with only 2tiets. The monthly scatterplots are
included for comparison and confirmation of the wan results. Radar-derived

precipitation generally underestimates gauge measemts and the underestimation

increases with increasing distance from the rddai.
5.3.2.1Residuals
Residuals (RES) are calculated as:
RES = PRED - P (5.1)

where PRED are predicted values by the regression model Rr{chonthly) or PO8
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(annual) are gauge values. When the residual velugositive, the model is over-

predicting the actual precipitation. If the resillisanegative, the model based on radar
rainfall is under-predicting the real value of gpetation. Residuals for all stations are
shown in input data table, Appendix B. The highestidual values overreaching the
arbitrary selected threshold of £300mm were hidtiégl in red color. Note that these
stations are situated in high altitudes where theggenerally greater precipitation than
in lower altitudes and where radar measuremengss hccurate, primarily due to the

radar beam being obstructed by mountain ridges.

All of the residual values resulting from lineargression (figures 5.9 and 5.11) are
negative. One exception is the station ‘Hradec &ral, where the residual value is
positive, which means the model is over-predictihg real value. Meteorological
station Hradec Kralove lies in a ‘radar beam shddmiind an obstacle for last three
months of the year 2008 (refer to fig. 5.3). Theref this station was excluded from
the analysis of monthly datasets. Stations ‘Destn@rl.H.” and ‘Javornik’ from the
annual dataset lying in the same ‘radar beam shadownot show any outlying
residuals.

5.3.2.2Residual Plots

Residuals (refer to eq. 5.1) were plotted agaiagserl variables. A linear (represented
by solid line) as well as second order polynom@dghed line) regression curve was
fitted through the data to determine any underlymetptionships and dependencies
between residuals and other variables. This metields to explain the variation in

residuals and reveals factors which affect radassusements.

The following text contains pairs of scatter plotepresenting one variable plotted
against annual (on the left hand side) and mongbiythe right) residuals. The annual
residual plots are further analyzed in the textjlevthe monthly plots are included as
further reference for comparison and confirmatibmmnual results. This is because the

annual dataset containing 134 stations is considerare representative.
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Figures 5.12a and b: Altitude vs. annual and montbkiduals

It is generally accepted that altitude significanithfluences the spatial distribution of
precipitation. The main reason for increasing giéaiion with altitude is the orographic
lift, which occurs on windward slopes, where thésiag air mass expands and cools
adiabatically which results in increasing relativeumidity, creating clouds and

precipitation. [44]

As shown in fig. 5.12a, altitude has a strong ieflce on residuals. Altitude itself can
already explain 51% of variation in residuals. Thweest residuals around 0 are in altitudes
between 400 m and 500 m. Altitudes lower than 408how generally positive residual
values, while most of the altitudes above 500-nehaagative residual values. The highest

residuals appear at the highest altitudes.
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Figures 5.13a and b: Mean Temperature vs. annudlrapnnthly residuals

Fig. 5.13a reveals a relatively strong linear ietathip (R = 0.40) between mean annual
temperature and residuals. Higher residual valuesrge at colder stations, which again,
lie in higher altitudes. Mean temperature and wadit are highly correlated variables

(R?=0.90 and higher) [35] and therefore its inclusiomegression models together with
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altitude should be considered. However, only ong¢gheftwo variables should be used as
predictor in one model. The monthly dataset ondtier hand shows no correlation of
residuals and monthly mean temperature. This isanditect effect of temperature but is
caused by altitude. There is a high correlatiomaititude for annual averages and a much
weaker relationship of temperature and altitudenfonthly averages, because one can get

high temperatures at high altitudes during summer.
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Figures 5.14a and b: Sunshine Duration and solafiation vs. annual residuals

Figures 5.14a and b are both from the annual daaaskeshow solar influence on residuals.
It is interesting to note that the trend is negativthe case of solar radiation and positive
in the case of sunshine duration. Sunshine duraianphysical measure monitored at the
meteorological stations (takes into account clowvec), while solar radiation is a
theoretical measure derived from DEM and calculatethg ArcGIS. Solar radiation
reveals some linear trend which considering theff0.24 could explain ¥4 of variation of
residuals. Solar radiation contains informationwstope and aspect from the DEM. Both
slope and aspect can affect radar measuremerit®as $elow in figures 5.15 and 5.16.
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Figures 5.15a and b: Slope vs. annual and montblsiduals
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Regarding slope in fig. 5.15a, the majority of ista¢ lie on flat surface of slope 5° or
lower. Generally speaking, the higher the slope,Higher the residuals (negative, which

means radar is under-predicting).
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Figures 5.16a and b: Distance from the radar angems. annual and monthly residuals

Fig. 5.16a focuses on the distance from the radtenaa. The relationship between the
distance and residuals is rather quadratic thagafiriThis can be explained by the stations
situated too close or too far from the antenna ltieguin higher residuals. Highest

residuals (also negative) are associated with tistestions farthest away from the radar

antenna. Lowest residual values are at distanoggn@g from 50 to 100 km.
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Figures 5.17a and b:Latitude vs. annual and montagiduals

Latitude in fig. 5.17a does not reveal any straglgtronship with residuals, but the outliers
lie in latitudes above 51°, which is around thetinem border, where mountains spread

out.
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Figures 5.18a and b: Directional Difference smoathe 10km vs. annual and monthly residuals

Directional difference (DIF) beteween the directtowards the radar antenna and aspect is

displayed in fig. 21a. In other words, this var@allescribes the horizontal angle of the

radar beam and the reflectance area. Higher ctme)ebut still very low (R= 0.048),

between directional difference and residuals washdofor DIF smoothed to 10 km

compared to 1 km or 90 m.

Longitude in fig. 5.19a nor curvature in fig. 5.20ar aspect in fig. 5.21a does not have

any significant influence on residuals. In the cafseurvature, residual values around 0 are

spread out around curvature of 0, where the tersdiat.
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Figures 5.2a and b: Residuals vs. months and season

Table 5.1: Legend for 4 seasons (fig. 5.22b)

4 SEASONS:
1 - Spring

2 - Summer
3 - Fall

4 - Winter
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Neither months nor 4 seasons show significant tairom with residuals, concluding that

there is no seasonal variation in radar-rainfadidgetion.
5.4 Findings

The correlation coefficients @R obtained through the annual residual plots show h
certain factors influence the residuals. Monthlgigaals from a small number of stations
are less representative and are therefore includaithly for comparison with annual
residuals. Tab. 3 summarizes the annual&@ues which are sorted in descending order
according to the linear regression fit. *" in te®means that SD08 was excluded from the
analysis, because not all of the gauge stationssumeasunshine duration (SD08). An
additional reason for this is that sunshine duratimuld have to be interpolated over the
whole area with certain precision in order to beduas areal prediction factor.

Table 5.2: Regression coefficients between anrestivals and various factors

RZ
linear polynomial
ALTITUDE 0.514 0.537

MTO8 0.404 0.474
*SD08 0.357 0.447
SOLARRAD 0.243 0.246
SLOPE 0.180 0.232
DIST 0.156  0.338
N_LAT 0.107 0.155

DIRDIFF10 0.048 0.051

DIRDIFF5 0.041 0.043

DIRDIFF 0.019 0.041

CURVAT 0.002 0.013

E_LON 0.000 0.032

ASPECT 0.000 0.036
Factors with the highest’Rialues have the highest influence on residualstemte can
bias radar measurements. Multiple regression asalyas performed with the factors in
table 5.2 lying above the dashed line (the line wesvn arbitrary). Significant factors
were identified using backward stepwise approadtichivis documented in table A-2.1 in
appendix 2.

Significant factors are found ALT, N_LAT and DISRelationship between distance and
residuals is better described by a polynomial i@iship rather than linear as shown in
fig. 19a. The polynomial relationship is also utided in tab. 5.2 where the’Reaches the
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value of 0.338. Distance squared (DIST2) was tloeesihtroduced to the regression model
to simulate 2 order polynomial (quadratic) fit. The results ateonger than in the linear
case, since Rincreases from 0.66 to 0.74 (see tables A-2.12ahdn appendix 2)

The three factors included in the multivariate polyial regression model can explain
74% of variance of residuals. This finding is impot because it means that the residuals
are predictable from topographic and locationalaldes and not a consequence of random

variation.

5.4.1 Discussion

The findings above are important because it mdaaisthe residuals are predictable from
topographic and locational variables and are nbt arconsequence of random variation.
The regression analysis was performed includingstiadion suggested for exclusion in
section 5.3.2.1. The exclusion of the 3 stationsittoaed earlier would lead to slightly

better fittings of the regression curves and shghigher regression coefficients. Because
such an improvement would not be significant, tiree¢ stations were not left out from the

analysis.

Second, stations with residuals greater than +3@0p®r annum should not be excluded
from this analysis, because all of these statiomsnl high altitudes and represent the
mountainous regions where precipitation is hardhtwlel and always under-predicted by
the radar. This can be caused by the mountainegaes natural obstacles blocking the

radar beam.

Using radar data in precipitation modeling can asiex in low to mid altitudes, as evident

in figures 5.9-5.12, but it can be difficult, ifnepossible, in mountainous regions.

Findings are the result of analyzing residuals ketwradar and gauge rainfall sums at
annual and monthly scale. Looking at finer tempoeablution could introduce some other

topographic, locational or atmospheric variables.
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5.5 Significance

Findings confirm the hypothesis that radar measargnerrors are not only a cause of
random variation but are significantly affectedtbg following topographic and locational
variables: altitude, distance from the radar beamd &ss significantly by latitude.
Including these three geographic variables in rag@asurements in some form of location
specific calibration could improve the radars aacyrand remove up to 74% variance of

residual errors.

5.5.1 Suggestions for Future

Having monthly rain gauge data for all of the mebdmgical stations in the Czech

Republic one could increase the number of stagissiamples for analysis from 134 to
12(months) x 134(stations)=1608(samples). (5.2)

Having wind direction observations it would be pbks to develop and test new
interactive variables such as the product of slapd orientation (orientation of the
prevailing winds at some specific height) or expesaf a slope with regard to wind

directions.
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6 Analysis

The magnitude of the multivariate regression amgligsin selecting the best fitting model
by choosing significant independent variables. fRer residual correction, an appropriate

local interpolation technique needs to be selected.

6.1 Linear Relationships

The first reasonable step in multivariate regrassinalysis is finding linear relationships
by looking at scatter plots and correlation co@dfits of the independent variables with the
climate variables. The relationship between clinzatd independent variables is expressed
by the correlation coefficient ‘R Tab. 6.1 shows the most significant linear priedic
followed by scatter plots with linear regressionui@iipns with B produced in MS Excel.
The dashed line in tab. 6.1 and 6.2 separatesgh#icant from non-significant variables

based on the probability of F-statistics.

Table 6.1: Correlations of various independent ahtés with MT (dataset A, 132 observations)

MT 2008
Variable R? F  probF
ALT 0.898 1146.7 0.00
SOLRAD 0.470 1155 0.00
SLP 0.230 37.8 0.00
Y 0.017 2.3 0.13
X 0.015 2.0 0.16
CRV 0013 17 | 0.19
ASF 0.00C 0.2 0.8t

The best predictor of MT is undoubtedly altitudegdig. 6.1, tab. 6.1). Aspect on the other
hand shows no correlation with MT, although it wagected to be a useful predictor.
Notice the cloud of points in slope as well as umvature scatter plots in fig. 6.1 and 6.2.
Neither of them should be used as predictors, dimeaslope of the curve (or shape in case

of quadratic regression) is determined by onlyva deitlying points.
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Set of figures 6.1: Scatter plots of various indefsnt variables with MT (dataset A, 132 observajon
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Table 6.2: Correlations of various independent ahtes with P (dataset A, 132 observations)

P 2008

R? F probF
variable linear poly 2nd linear
ZXN5 0.622 0.698 214 0.00

ALT5km 0.57¢ 0.627 17¢ 0.0C
ZXW25 0.549 0.628 158 0.00
ALT1km 0.53¢ 0.59: 157 0.0C
ALT 0.497 0.526 128 0.00
SOLRAD  0.20¢ 0.21f 34 0.0C
CRV5km 0.202 0.350 32 0.00

SLF 0.18: 0.267 29 0.0C
X0 0.079 0.141 11 0.00
Yo . 0.02¢ 0.051 4  0.0%
CRV1k 0.000 0.309 0 0.81
CRV 0.000 0.012 0 0.96
ASP 0.000 0.037 0 0.93
1600 1600 3573
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Set of figures 6.2: Scatter plots of various indefsnt variables with P (dataset A, 132 observadions

6.2 Backward Stepwise Approach

Selecting significant predictors is in fact builgithe regression model. The backward
stepwise approach was performed manually in Geottwvare. In the case of MT, there
were 7 independent variables tested: ALT, X0, YIOR,.SASP, CRV, and SOLRAD. Below
is a table showing the backward elimination of peledent variables for dataset B, tables
for dataset A are in Appendix 2. *' denotes thestBtting (but still reasonable) model,
final model selected with respect to the resultdatkward elimination of each year in

dataset A are marked in bold.

Table 6.3: Backward elimination of ind. variablesMT prediction (dataset A, 132 stations)

MT2008
ALT Y CRV ASP SOLRAD SLP

R? adj.R? t prob. t prob. t prob. t prob. t prob. t prob.
0.921 0.918| -23.57 0.000 -5.74 0.000 0.89 0.378 1.21 0.229 1.08 0.281 0.62 0.539
0.921 0.918| -25.10 0.000 -5.75 0.000 1.13 0.259 1.15 0.251 1.07 0.288

0.921 0.918| -37.75 0.000 -5.67 0.000 1.89 0.062 1.27 0.205

*0.920 0.918| -37.64 0.000 -5.56 0.000 1.95 0.053

0.917 0.916| -37.43 0.000 -5.43 0.000

0.898 0.897| -33.86 0.000

MT =12.010 - 0.00603761 * [DEM-srtm] - 0.0000@88279 * [YO]
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In the case of P, there were all together 26 indeget variables. For dataset B the
backward stepwise approach is shown in tab. 6.dwpddut only the variables eliminated

without the t-statistics, due to space constrains.

Table 6.4: Backward elimination of independent &halés in P prediction (dataset A, 132 stations)

R? adiR? F MK P2008: Backward Stepwise Approach
0.86 0.82 21 413| ALT_1k_5k_10k,X,Y,SOLRAD,ASP,SLRY 1k_5k,16 x Zx
0.86 0.82 28 363| ALT_5k_10k,X,Y,SOLRAD,ASP,SLP,CR¥ x Zx (-ZxSWS5 - ZxW10)
ALT_5k_10k,X,Y,SOLRAD,ASP,SLP,10 x Zx (-ZXxXNW5ZxN25
- ZXSW25 -ZX\W5)

0.85 0.83 45 255/ ALT_10k,X,Y,SOLRAD,ASP,SLP,8 x XxN10 -ZxSW10)

0.85 0.83 51 231| ALT_10k,X,Y,SOLRAD,ASP,SLP,6 x @XXxW1 - ZxN1)

084 083 59 97| ALT_10kX,Y,ASP,6 X ZX (-ZXW1 - Zg\

0.84 0.83 70 85 ALT, X, Y, ZxXW25, ZxSW1, ZxNW1_1®&B,ZxN5

0.82 0.82 98 68 ALT, X, Y, ZXW25, ZXxNW1, ZxN5
*0.82 0.81 143 11 X, Y, ZxXW25, ZxN5

0.80 0.79 166 10 X, Y, ZXN5

0.77  0.7¢ 10€ 11 ALTI1k, X, Y, ZxW25

0.85 0.83 37 299

P = 0.5065762 * [ALT1K] + 0.0004720109 * [X0] + @D042431 * [YO] + 0.2504948 * [ZXW25] - 27.013

Tables of dataset A are included in Appendix 2. iAgvo test about 26 independent
variables it would be time demanding to carry ouw tselection approach manually,
excluding one by one variable, for each year amth eimate variable. In order to cut the
time needed for the selection process for dataséwvé shortcuts had to be ‘taken’. Since
altitude is acknowledged as a good predictor, dudk variables (1 from the DEM and 3
smoothed to different scales) were tested sepgratall only the one most significant
entered the backward stepwise selection with Akwoindependent variables. Second, only
those variables proven to be significant in theaslett B in year 2008 were included in the
backward stepwise selection, because dataset B W8R observations is more
representative. Third, all 16 Zx variables werduded, but only 3-5 Zx variables with the
student t-test greater than 1 were further takea account. This way the number of
independent variables was reduced and the backstemvise approach was performed
from this point the same way as in the case of &€Juding one by one variable, which is
documented on the DVD attached in folde¥gression_protocols\ (containing

about 110 protocols from Geoda).
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6.3 Regression Models
Based on the backward selection process, finaéssgyn models look as following:
= Regression model for MT has two independent vagsbl
MT = b, + byALT + b,Y0 (6.1)
= Regression model for P has four independent vasabl
P = b, + b,ALT1km + b,YO0 + b3 X0 + b, ZxW 25 (6.2)

Values of regression coefficients-b, are in equations below the tables of backward
selection in Appendix 2. Both linear models provaigisfying predictions and therefore
higher-order polynomial models were not testeditéde and latitude can explain more
than 90% of the spatial variability of MT. Precgdibn is in general more difficult to
predict and therefore more variables are neededlder to explain more than 78% of the

variability of P.

Regression equations were put into the ‘Raster uGlwr’ in order to create ‘potential

maps’.
6.4 Corrector Maps

Corrector maps are calculated by interpolatingesiduals. For both MT and P, IDW was
used with the power of 2 and the maximum of 10 iesseighboring points that can be
used to calculate the value at each cell. This atethias suggested by Ninyerola [38] for
MT because it yielded better results than spliGesrector maps are classified into 9 equal

interval classes for visualization purposes.

In the case of P, IDW with the power of 1, 2, ands@line with the tension of 400 and
kriging was tested using independent observatidrdataset B. Among IDW techniques,
the power of 2 was slightly better than 1 or 3.8 yielded the same results as IDW with
the power of 2. For the kriging method, a semivgnaon was created (fig. 6.3), which did
not show any characteristic autocorrelation cuittend the residuals. In addition, there
was a long time needed for computation of ordinlanging, therefore the IDW was

selected.
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Figure 6.3: Semivariogram of residuals of P in 2

In figures 6.4 and 6.6n the next pagare two examplesf a residual correction map f
the year 2008jiven for comparison and illustrati. Areas in green with negative residu
are locations, where the model c-predicts the reality, while areas in red white colors
are where the model uncepredicts the realityCorrector maps are added to ‘poten
maps’ (see eqt.6) using ‘Raster Calculator’ in order to obtde ffinal climate surfac
Corrector maps for MT and P are stored on the DVMDached in he

\maps\MT\c orrector_map and \maps\P\corrector_map

The overall pattern among the twelve MT correctapsis undeprediction in the easte
and sometimes central part of the CR and -prediction in the western part of the C
The area around Prague¢ where the lowest values appeahere temperature is alwa
underpredicted. This has most likely something to dchwite heat island problem. Pe:
of overprediction where temperatures are usually lowe locatedaround the statior
‘Tabor’ and‘Pribyslav’ in the centr of CR ‘Liberec’ in the North and stations onwal

from ‘Olomouc’ in the est.

The overall pattern of P corror maps is undegorediction along the borders in t
southwest, north and the west and c-prediction in the central part and western

Also, station ‘Milesovka’ in the nor-west receives less precipitation than predic
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Corrector Map of MT, 2008
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Figure 6.4: Corrector Map created by interpolatingsiduals of MT in 2008 (dataset A, 22 stations)
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Figure 6.5: Corrector Map created by interpolatingsiduals of P in 2008 (dataset A, 22 stations)

56



6.5 MT and P Maps

Once the final climate surface is created, low-gites (focal mean of 3 surrounding cells
in case of MT and 10 surrounding cells in case)agRhen applied to smooth the surface,
particularly the edges, and to get rid of ‘longhyxels. Final maps, 12 for each year and
each climate variable (MT and P) are stored in IfM@nat and exported into JPG format.
Four examples of final maps are in section 8.1fralh the year 2008. For comparison,

there are maps created from 22 stations (datasas Mell as from 132 stations (dataset B).

6.6 Deviation from Normal

The World Meteorological Organization (WMO) defindge temperature normal as the
‘period average, computed for a uniform and re&dyiiong period comprising at least
three consecutive ten-year periods’. In CR, CHMblmhes 30-years normals for the
period 1961-1990. In author’s previous work, degra from normals were for some
computational problem calculated for the 22 statiamd then interpolated using IDW.
However it is much more effective to subtract theole rasters, pixel by pixel, to calculate

an anomaly map, according to the following equatjavhere i = 1998, 1999, ..., 2009.
Dmt = MT; — MTi961-90 (6.3)
Dp = R — Pigs1-90 (6.4)

Deviation rasters are smoothed with a low passrf{ftocal mean of 20 neighboring cells)

and stored at 180 m spatial resolution.

6.7 Visualization

For the animation using a GIF file and for the Map&r, final climate surfaces were
smoothed (with the focal mean statistics, P witrath@ MT with 3 neighboring cells). MT
surfaces were smoothed with 3 neighboring celly amlorder to smooth the edges and

keep the precision of measured values at meteadcalogtations.

It was crucial for the animation to maintain thengsaclasses and layout, so that the only
features changing is the map itself and the yehe $ame classification is essential,
because it makes comparison among the twelve yemsble. In addition, P layers were
laid over a shaded relief with 10% and MT with 15%#nsparency in order to emphasize
the climate-topography relationship. Animated Gifesf were created with the free
software GIMP with 3 seconds rate and the resaiutiol600px and 800px.
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7  Accuracy

The dataset’s accuracy should be well documentechétadata) in order to enable users to
estimate the reliability of any derived results.eTaccuracy of the resulting maps was
assessed using statistical criteria mentionedaticse7.1. Nevertheless, not only statistical
criteria were used to determine the validity of thierpolated climatic maps. Daly et al.

emphasize that subjective evaluation of the redsenass of the maps is worthwhile. The

climatic maps were compared with the Climate Ada€zechia in section 7.4.

7.1 Statistical Criteria

Table 7.1: Statistical criteria used to assessafeeement of the models

Definitions N...number of observations
F...degrees of freedom
O...observed value
0...mean of observed values
P...predicted value

Least-square regression R2...correlation coefficient
adj-Rz... adjusted R

. 1
Mean bias error (MBE) MBE =+ N (P, —0)

Mean absolute error (MAE) MAE ==Y |P,— 0,
N

Root mean square error (RMSE) RMSE = \/%Z{-":I(PL- —0;)?

with an adjustment for a loss in degrees of freetom

Root mean square error (RM@B RMSE,,; = \/%Z?’;l(ﬂ- —0;)?

without an adjustment for a loss in F

Statistical criteria above serve to determine tiierebetween model predictions and the
real data recorded at the weather stations. Cdtioelacoefficient (also known as
coefficient of determination) Ris the first measure of the goodness of fit of thedel.
[31] R?varies between +1 and -1, both bracket values artidig a perfect fit. [23]
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Since the magnitudes of’ Rre not consistently related to the accuracy efligtions and
tend to over-estimate the goodness of fit of thel@® more objective statistics is needed.
Adjusted correlation coefficient (adj?Rcompensates for this optimistic trait irf Ry
taking into account the size of the sample andntimber of prediction variables. Unlike
R?, adj-R does not necessarily increase when additional Mesaare added to the model.
[31]

RMSE and MAE are good overall measures of modefopmance, because they
summarize the mean difference in the units of ptedi variable. RMSE puts a lot of

weight on high errors, while MAE is less sensitiweextreme values. [50]

7.2 Precision of DEM

The SRTM data meet the absolute vertical accurdcyléom (linear error at 90%
confidence), respectively, as it was specified tfig mission. The vertical accuracy is
actually significantly better than 16 m, closerdfdbm, according to USGS. [49] Tab. A-3.1
in appendix 3 shows the differences for all 132tiets between real altitudes of

meteorological stations (ALT) and altitudes derifeam
1) the original DEM (ALTBewm)

2) the DEM resampled by bilinear transformation wieenverting to UTM (ALBem_utm)

The resulting statistical characteristics are balotab. 7.2.

Table 7.2: DEM's accuracy

1) DEM 2) DEMyum
MBE= 2.3 m MBE= 1.9 m
MAE= 5.0 m MAE= 4.7 m
RMSE= 7.8 m RMSE= 7.0 m

Tab. 7.2 confirms the overall good agreement tleaa 7 m) in real altitudes and altitudes
derived from the DEM as stated by the USGS. The DEvisformed to UTM shows even

better agreement with reality than the original.one

7.3 Numerical Assessment

When there are many observations available, tylgié@l%6 of them are used for estimating
the regression model and the remaining 40%, oftedamly selected from the whole
dataset, are used for independent validation. df tfodel is considered reliable and the
results are satisfying, the remaining 40% oftereetite regression as well to improve the

model by including all of the stations.
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The case of this thesis is somehow the oppositeceSihere is only a small subset of
observations available (22 stations) for each yélae, detailed dataset B with 111
observations (132 minus 21 stations which are #esas in dataset A) is used for
validation of the one year (2008). So there arg @B8P6 of observations used in prediction
and 72% for validation. This way only one yeamddpendently validated, nevertheless it
can provide a good measure of the overall perfoomanf the regression models. The
validation of the regression model for the year&@®® in tab. A-3.2 in appendix 3. In

tab. 7.3 below are the results for both MT and P.

Table 7.3: Validation of MT and P using datasetlBZ stations)

MTO8 P08
MBE = -22.z °C MBE = -19€ mm
MAE = 0.2 °C MAE = 67 mm
RMS = 04 °C RMS = 89 mm
MAX = 16 °C MAX = 280 mm
MED = 0.2 °C MED = 53 mm

According to the results of validation for the y@&08, we can assume that the regression
models will predict with the same efficiency in themaining years as well. The overall
accuracy of MT given by RMSE (standard deviatianpi4°C. In case of P the accuracy

given by RMSE is approximately 90mm.

The overall accuracy of the final climate maps haracterized by RMS, calculated as a
guadratic mean of standard deviations from Geagglatocols of regression (tab. 7.4). The
accuracy of MT is 0.4 °C and 106 mm of P.

The fit of the MT model is excellent Petween 0.90 and 0.97), and the fit of P model is
better than expected {Fbetween 0.78 and 0.92). The following text compaRé and
RMSE values to results from works of other authdrle final regression models in
Arizona and New Mexico showed a higher degree abwae for temperature th 0.98),
but a higher root mean-squared error RMSE = 0.748CThe relationship between the
average annual air temperature and four terrairabi@s in Italy explained 92% of the
variance and produced a standard error of 0.89T@. In the middle Ebro Valley in
Spain, B of annual mean temperature reached only 0.74 aki$ R.62 °C, while
precipitation reached 0.95 and RMSE 28.2 mm ushng ¢ame combined regression
method. [50] Ninyerola, the author of the combimesdidual method, obtained R 0.84
and RMSE = 137.8 mm for mapping annual precipitatid the Iberian peninsula. [37]

In China, precipitation in the whole year was pcéstil with 72.6% and RMSE 8.4%. [46]
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Table 7.4: R, standard deviations from protocols of regressfoguadratic mean (RMS)

Year R? RMSE
MT P
MT P [°Cl  [mm]
1998 0.95 0.90 0.40 945
1999 0.96 0.92 0.37 723
2000 0.97 0.86 0.33 1096
2001 0.96 0.82 0.36 1412
2002 0.96 0.78 0.36 1454
2003 0.95 0.87 0.41 727
2004 0.95 0.92 0.41 704
2005 0.93 0.89 0.49 102/4
2006 0.90 0.85 0.52 105/4
2007 0.97 0.85 0.34 1058
2008 0.97 0.82 0.34 1010
2009 0.95 0.83 0.40 1205
RMSE = 0.40 106.1

7.4 Spatial Assessment

Spatial assessment is here called a visual coropawisthe resulting maps with some other,
ideally more precise, map. One comparison wasajrgaven in figures 6.5-6.8, with maps

interpolated using the spatially denser datasettB 182 observations. 22 observations, being
very sparse for the whole area of CR, do not cagagal anomalies, but are overall sufficient

for predicting annual MT and P.

Maps in figures 7.1 and 7.2 were simply calculddgdubtracting two maps of the same year
(2008), one created from dataset A (22 observatiimas the one interpolated from dataset B
(132 observations). The maps clearly show thatntlap created from dataset B is able to
depict local anomalies (thanks to the residualeabion method) while the map from dataset A
is more general. Blue colors are areas that adealetter than they should be, while areas in

red/pink colors are warmer/drier than they shoeld b

Figures 7.3-7.6 provide an independent assessrepatial patterns of MT and P through a
comparison with a map from different source — thimé&te Atlas of Czechia. Annual MT and

P for the long-term period between 1961-1990 weterpolated using the same regression
models (eq. 6.1 and 6.2) with 22 stations, andaiisgd using the same classification. Similar
color scheme to the Climate Atlas was selectetidw dor visual comparison, see figures 7.3—
7.6. The confrontation in figures 7.3—7.6 confirtingt the combined regression method yields

excellent results of MT and reasonable areal Higion of P.
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MTO8 (22 stations) - MT2008 (132 stations)
in the Czech Republic,

2008
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Projection: WGS84 UTM Zone 330

Figure 7.1: Deviation of MT (dataset A — dataset B)
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Figure 7.2: Deviation of P (dataset A — dataset B)
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Annual Long-Term Mean Air Temperature
in the Czech Republic,
1961-1990
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Figure 7.3: 30-year mean of mean air temperature

Figure 7.4: 40-year mean (1961-2000) of annual maamemperature (Source: Climate Atlas of Czechia)
(48]
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Annual Long-term Precipiation
. in the Czech Republic,
1961-1990
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Figure 7.5: 30-year mean of annual precipitation

Figure 7.6: 40-year mean (1961-2000) of annual fpitation (Source: Climate Atlas of Czechia) [48]
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Results

Annual Mean Air Temperature
in the Czech Republic,

2008
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Figure 8.1: One example of final MT map
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Figure 8.2: The same map as in fig. 8.1 but intéafenl from 132 stations, included for comparison.
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Annual Precipiation in the Czech Republic, 2008
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Figure 8.3: One example of final P map
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Figure 8.4: The same map as in fig. 8.3 interpaldtem 132 stations and included for comparison.
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8.1 Spatial Pattern of MT and P

Resulting MT, P maps and their deviations from redrare stored on the DVD attached, at
http://maps.fsv.cvut.cz/~muller/ as both static and animated maps, and also

published interactively dittp://maps.fsv.cvut.cz/ka-map/

Spatial pattern of MT copies the topography. Sitemperature is highly dependent on
altitude, the warmest areas are river valleys imre¢ Bohemia and south Moravia, while
the coldest areas are situated along the bordeh®imountains. There are only two focus
points around Prague and in southern Moravia waereial MT reaches over 11 °C (only
in the years 2000, 2007, and 2008). The spatigépaof precipitation is similar to the MT.

The rainiest places are along the borders in thentans, while the driest areas lie in the
mountain shadow in the west Bohemia and in thehsblgravia. The year 2002 when CR

was hit by a 100-year flood on the Vltava Rivenadably wetter compared to other years.

The agreement of the year 2008 MT map interpol&iea 22 stations (fig. 8.5) with the
more accurate map interpolated from 132 statioigs &f6) is very good, although in
general the map in fig. 8.5 is a little warmer. ST'td due to the residual correction, which
allows taking into account local anomalies. Spatettern of P is also satisfying although
the map created from dataset A is generally skgbter-predicted. The changing pattern

of MT and P throughout the last twelve years iaitleto see in the animated maps.

8.2 Deviations from Normal

Maps of deviations from normal are published inghene way as MT and P maps, but are
not included in the MapServer application. Accogdia the deviations of MT the warmest
years were 2000, 2002, 2007, and 2008. The onbl fmaints colder than normal appear in
years 1998, 2004, and 2005. Maps were smoothedtéti-ocal Mean’ function with 20
neighboring cells. Using ‘Raster Calculator’, thighenetic mean of the 12 deviation maps
of both MT and P was calculated for each pixel. fi§. 8.5) in the last 12 years was
higher than the 30-year normal, overall by 1.0 fedn value of the whole raster in
fig. 8.5). In the case of P (fig. 8.6), less préaifpon than normal fell in central Bohemia
and northern Moravia by approximately 40 mm, wiute the rest of the CR fell more P

than normal ranging from 20 to 160 mm (mean valub® whole raster was 39.7 mm).
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Deviation of Mean Temperature from Normal,
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9 MapServer

The popularization of web mapping technologies byo@e has encouraged the

development of more interactive web mapping tealesq [33] For an ordinary user

looking at a map on the Internet it is now much entbran a simple look at a static map,
which shows isolated information about a spectiene. By using a GIS it is possible to
combine information and visualize them in form ayérs. The Internet can be used in an
effective manner to visualize as well as provideeas to information for a wide range of

users. [16]

A map server is in fact a GIS, which is operatedtémt parameters. Map servers are
running ‘above’ a web server such as Apache, whakes a request by handing over the
parameters. Map server uses information passetkimequest and the mapfile (discussed
later in section 9.2) to create an image of theiested map. [7] A variety of map servers
exist. The commercial branch is certainly represgridy ArcGIS Server from ESRI, or

TopoL Internet Server and T-MapServer from Czeamgj while the Open Source branch
is quickly approaching the commercial one. The nkastwn Open Source map servers are
GeoServer and the MapServer from the Universitylioinesota (UMN). UMN MapServer

is running at maps.fsv.cvut.cz at CTU and is themeefised in this thesis.

UMN MapServer is commonly referred to as ‘MapServistapServer is an Open Source
geographic data rendering engine written in C. Dmped at UMN in cooperation with
NASA and the Minnesota Department of Natural ResesirMapServer is now a project of
OSGeo, and is maintained by developers from aratedworld. The purpose of the
MapServer is to dynamically display spatial datags) rasters and vector data) over the

internet.

A simple MapServer application consists of:
= Map File - a structured text configuration file which tettee MapServer how to

access data and draw the map, more in section 9.2.

= Data - MapServer can utilize many geographic data sotypes (vector formats
such as ESRI shapefile, PostGIS, KML, or DGN, amdtar formats such as
TIFF/GeoTIFF, PNG and many others via GDAL).

» HTML Pages - are the interface between the user and the Map6e

» Template File - controls how the maps and legends output by Mags will
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appear in the browser and also determines how $iee can interact with the

MapServer application (browse, zoom, pan, query).

= MapServer CGI - The binary or executable file that receives e=gsl and returns

images, data, etc. By default, this program isechlnapserv’.

= HTTP Server - serves up the html pages for the user’s browséen. need a
working HTTP (Web) server, such as Apache, on #mesmachine as you have the

MapServer.
Some of the features of the MapServer are [32]:

= Advanced cartographic output (scale dependent rieattawing, feature labeling
including label collision mediation, fully custonaizle, template driven output, map

element automation — scalebar, reference map,ememd)
= Support for popular scripting and development emmnents (PHP, Java, Perl, etc.)
» Cross-platform support (Linux, Windows, Mac, etc.)

=  Support of numerous Open Geospatial Consortium (OsEhdards (WMS, WFS,

etc.)

= Map projection support (on-the-fly map projectiaging the Proj.4 library)

9.1 ka-Map

MapServer alone does not provide the high levehtafractivity, pre-rendering, caching of
tile images, smooth panning, etc. [33] ka-Map isopen source template that uses a java
script API for developing highly interactive web-ppang interfaces. [40] ka-Map coupled
with MapServer is a powerful combination of operurse web-mapping technologies.
MapServer prepares the map images, and ka-Mapsseérem to the web browser. [33] ka-
Map uses AJAX and the PHP MapScript to render m@33lt supports the usual array of
user GIS interface elements such as: continuousipgrwithout reloading the page,
zooming to pre-set scales, scalebar, legend, ayrdde support. [40] In summary, ka-map
has 4 requirements, which need to be running tegethpache, MapServer, PHP and

Mapscript.

The ka-map package is in fact a folder structuresisting of many HTML, PHP and CSS
files. The whole structure occupies less than 4M&nory. ka-Map is not installed, you

can start ‘out of the box’ with minimal configurati. In fact, you need to do 6 steps:
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Decompress the package downloaded into a folder.

It is recommended to set a web server alias bynadttie following script into web

server’s configuration file:

Alias /ka-map/ "[full path to ka-map folder]"
<Directory "[full path to ka-map folder]/htdocs/">
Options Indexes
AllowOverride None
Order allow,deny
Allow from all
</Directory>

This allows entering a simple URIht{p://maps.fsv.cvut.cz/ka-map/ )
and having it pointed to the file path where ka-Mamtent is stored. It also sets the

rights of access to the ‘htdocs’ folder for thesnti

Rename the main configuration filka-map\include\config.dist.php to

config.php
Forth step is setting up two library pointers ia tonfig.php file:

$szPHPMapScriptModule="php_mapscript..PHP_SHLIB_SU FFIX;
$szPHPGDModule = 'gd.".PHP_SHLIB_SUFFIX;

Tell ka-Map where the mapfile is, as well as sortteomap-specific settings. This is

done in the config.php file in the $aszMapFilesgrr

$aszMapFiles = array(

'mt' => array(
'title' => 'Mean Temperatures',
'path' => '/data/_projekty/amuller/mt.map' ,
‘scales' => array( 2000000, 1000000,500000 ,250000),
‘format' =>'PNG"),

'P' => array(
'title' => 'Precipitation’,
'path' => '/data/_projekty/amuller/p.map’,
‘scales' => array( 2000000, 1000000,500000 ,250000),
‘format' =>'PNG")

);
ka-Map allows including multiple mapfiles, whichrcéde selected in a drop down

menu in the upper left corner of the applicatiag. (®.1).

Set up the temporary folder, where kaMap creasetilét cache. The directory does not
have to be web-accessible, but it must be writhlylehe web-server-user and allow

creation of both directories and files.

$szBaseCacheDir = "/var/www/tmp/";
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9.2 Mapfile

Mapfile is a structured text configuration file fdata access and styling for MapServer. It
defines the area of the map, tells the MapServesrevithe data is stored and where to
output images. It also defines map layers, inclgdinojections and symbology. It must

have a MAP extension otherwise MapServer will remtognize it. Mapfile is made up of

Figure 9.1: Screenshot of the MapServer with ka-Map

different objects. Each object has a variety ofapsters available for it. All mapfile

parameters are documented in the mapfile referf@®&}eA part of the mapfile source code

displaying three layers including comments is ideld in Appendix 4.
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10 Conclusions

A GIS-based technique has been applied for mapgpadial distribution at high spatial
resolution of two climatological variables: annuaiean temperature and annual
precipitation for the period 1998-2009. The resgltmaps suggest that the combined
regression approach is a useful tool for interfprodpdrom sparse point data. The combined
approach involves regression using geographical tmdhin variables as predictors
followed by local interpolation of residuals. Alidte has proven to be overall the best
predictor of both climatological variables. Altitaénd latitude have been found to be the
most powerful predictors of annual mean temperatlrecase of annual precipitation,
significant variables are ZxW25, altitude, longiudnd latitude. Aspect was expected to

be a significant predictor of MT, but this did f@ppen.

The final regression model of mean temperature lesals to describe 90-97% of spatial
variability with the standard deviation RMSE = 0@&. Final precipitation model shows a
moderate degree of explained spatial variance 7&-9#ith RMSE = 106 mm.
In comparison with the Climate Atlas of Czechia Igited by the CHMI, where the
authors consider linear models dependent on etevathis study provides a deeper

analysis of the influence of topography on MT and P

The focus of the radar study in chapter 5 was tbe of radar data in precipitation
modeling over the area of the Czech Republic. Tiret finding was that radar rainfall
sums do not coincide nor significantly correlater(elation coefficient B= 0.18) with
rain gauge observations due to high residual eespecially in mountainous regions as
shown in figures 5.9-5.12. By the means of regogsanalysis residuals between the radar
predicted rainfalls and rain gauge observationseweaiculated and then studied using
residual regression analysis. A multivariate seconai®r polynomial regression model was
developed with three topographic and locationalaldes as the best predictors: altitude,
distance from the radar antenna and latitude, wbehexplain up to 74% of variance of
the residual errors. Such finding is importantegards to radar residual errors which are
not random, but can be partially predicted whichymnalow for calibration and
improvement in a radar’s accuracy. The regressi@tyais was firstly conducted with an
annual dataset containing 134 rain gauge statiodssacondly for comparison with a
monthly dataset including 21 rainfall recording gaustations. The latter dataset is less
representative but confirms the results of annatskts and allows us to look at seasonal
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variation. Nevertheless, as shown in fig. 5.22rahe no significant seasonal variation in

radar-rainfall prediction.

Animated maps of deviations of MT from normals shibzt the last 12 years have been
significantly warmer than the 30-year normal, apprately by 1 °C, which suggests that

the hypothesis of global warming is true.

The key success of this thesis is in obtaining goesults with only a subset of
meteorological stations by using the topographgiate relationship. The resulting
climatological maps available atttp://maps.fsv.cvut.cz/ka-map/ or

http://maps.fsv.cvut.cz/~muller/ have potential applications in many

disciplines related to Earth Sciences.

10.1 Future Work

The largest limitation of this work is having ordysubset of 22 meteorological stations
available. If data from all stations had been pitedi such as dataset B in year 2008, final
maps would have had better accuracy and would baderlined local anomalies such as

heat islands, as cities reflect and emit more theat surrounding natural areas.

Annual means were studied, although for examplenmmaximum and mean minimum
temperature is important in bioclimatological argtieultural research. It would certainly

be interesting to look at the amplitudes of botimatological variables.

Details of how to use radar data (particularly thettern of annual radar sums) in
precipitation modeling remain unexplored, due ® liigh errors between radar and gauge

measurements, which would need to be removed threame calibration.
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Appendix 1: Missing Data

Table A.1: Dataset A, MT in year 2008 and missialges in red

NR | MSTATION ALT NOV | DEC R(AQI'8
1 Brno Turany 241.0 6.5 2.1 10.7
Ceske
2 Budejovice 394.1 4.9 1.5 9.8
3 Doksany 158.0 4.9 2.0 9.9
4 Holesov 223.6 6.8 2.2 10.3
5 Hradec Kralove| 278.0 5.9 2.0 10.3
6 Chel 483.( 3.7 0.1 8.5
7 Churanov 1117.8] 2.0 24 55
8 Klatovy 425.0 4.6 1.0 9.4
9 Kuchaiovice 334.( 5.5 1.t 10.£
10 | Liberec 397.7 4.3 0.9 8.7
11 Lysa hora 1321.80 0.5 -3.5 3.9
12 | Milesovka 833.0 2.3 -2.3| 6.7
13 | Mosnov 250.4 6.2 1.7 9.9
14 | Olomouc 210.0 6.4 2.2 10.5
15 | Praha Karlov 232.0 5.9 2.7 11.1
16 | Praha Ruzyne 364.0 4.6 1.0 9.4
17 | Pribyslay 530.( 4.3 0.1 8.2
18 | Semcice 234.0 5.1 1.9 109
19 | Svratouch 737.0 3.2 1.3 7.2
20 | Tabor 459.0 4.1 0.5 8.9
21 | Velke Mezirici | 452.( 4.¢ 0.5 8.8
22 | Velke Pavlovice] 196.0 | 5.89 2.13 | 10.81

Regression equations from MS Excel (fig. 3.5):
MTyopos = —0.004 = ALT + 6.844,  R* = 0.869

MTpgcos = —0.005 x ALT + 3.198,  R®> = 0.945



Table A.1: Dataset A, P in year 2008 and missirlgesin red

NR MSTATION ALT CURV | JAN | FEB| MAR| JUN| JUL| AUG| NOV| BC | YO08P
1 | Brno Turany 241.0 0.05 17 10 32 359 62 446 29335 426
Ceske
2 | Budejovice 394.1| -0.0%| 18.¢ 10| 324 | 78.4| 66.2 60 45 | 24.7| 569.:
3 | Doksany 158.0 0.00 2p 21 247 80. 98 608 15.B.73 560.8
4 | Holesov 223.6 0.28 354 18 4 25. 108 472 2730.1| 5345
5 | Hradec Kralove 278. -0.18  26|3 P5 A7 459 64.66.54 46.8] 20.3 465.]
6 | Chet 483.C| -0.08| 28.¢ 41| 69.2| 69.5| 98.€ 60| 25.1| 36.4| 731«
7 | Churanov 1117.9 0.0B 41)9 18 140 76.9 127 110 3 p554.4 1011
8 | Klatovy 425.0 -0.13 2114 20  47]2 333 5%6 54.99.62 35.2| 478.9
9 | Kucharovice 334.0 0.08 154 7|4 287 841 703 .63830.3] 215 4454
10 | Liberec 397.7 0.08 80. g3 1 515 116 842 68B41| 8412
11 | Lysa hora 1321.8 0.78 107 61 77. 142 P45 144 .9 74102 1269
12 | Milesovka 833.0 154 304 20 36 449 79 69.45.1| 50.2| 560.9
13 | Mosnhov 250.4 -0.05 289 12 303 771 159 103 81343.1| 686.3
14 | Olomoutc 210.( 0.0C | 25. 11| 38.E| 47.6| 75| 86.1| 22.¢| 26.2| 484.¢
15 | Praha Karlov 232. 0.08 204 8 143 618 63.7 .35017.6| 28.5 408.]
16 | Praha Ruzyne 3640 0.00 221 13 20 66 T73.7 B82B.7| 29.1| 492.1
17 | Pribyslav 530.0 -0.08 337 23 536 569 744 786.8| 33.5] 563.7
18 | Semcict 234.(| -0.0F 38 32| 49.E| 49| 722 | 49.€| 38.6| 39.E| 540.
19 | Svratouch 737. 0.34 3144 29 857 8B4 951 6734.6| 31.2] 690.4
20 | Tabor 459.0 0.1 32.p 19 602 474 5p5 56.6 74428.3| 4422
21 | Velke Mezirici 452.0 0.0% 36.3 12 502 29.8 92.231.8| 64.1] 25.4 484.5
22 | Velke Pavlovice 196.0 0.44 173 12 34.7 449 450.34.9| 145| 27.0] 378.1




REGRESSI ON

Dependent Variable : NOVO8 Number of Observations: 20

Mean dependentvar :  37.705 Number of Variab les : 6

S.D. dependentvar : 19.4719 Degrees of Freed om : 14

R-squared :0.801272 F-statistic . 11.2896

Adjusted R-squared : 0.730297 Prob(F-statistic ) :0.000163695

Sum squared residual:  1506.97 Log likelihood : -71.6

Sigma-square . 107.641
Vari abl e Coef fici ent Std. Error t-Statistic Probability

CONSTANT  24.74683 6.879042 35 97425 0.0029133

JAN 0.6771153  0.1561442 4.3 36473 0.0006836
JUN -0.1873656  0.1254143 -14 93973 0.1573764
AUG -0.289728  0.1524117 -1.9 00956 0.0780942
ALT 0.05403731 0.01276454 4.2 33392 0.0008346
CURV  -31.60545 7.778165 -4.0 63355 0.0011625

Pyovos = 24.75 + 0.6771 * JAN — 0.1874 « JUN — 0.2897 * AUG + 0.05404 = ALT — 31.61 * CURV

REGRESSI ON
Dependent Variable : DECO8 Number of Observations: 20
Mean dependent var : 39.22 Number of Variab les : 5
S.D. dependentvar : 18.7669 Degrees of Freed om : 15
R-squared : 0.961063 F-statistic : 92.5582
Adjusted R-squared : 0.950679 Prob(F-statistic ) :2.19784e-010
Sum squared residual:  274.273 Log likelihood . -54.5627
Sigma-square . 18.2849
Vari abl e Coef fici ent Std. Error t-Statistic Probability
CONSTANT  13.71841 2.809142 4.8 83486 0.0001986
FEB 0.9121725 0.1077099 8.4 68792 0.0000004
MAR -0.3633209 0.0680562 -5.3 38543 0.0000828
JUL 0.1972553 0.02817413 7.0 01291 0.0000043
CURV  12.40645 2.701437 4.5 92538 0.0003522

Ppecog = 13.72 + 09122 * FEB — 0.3633 * MAR + 0.1973 * JUL + 12.41 x CURV

REGRESSI ON
Dependent Variable : NOVO5 Number of Observations: 21
Mean dependent var :  31.8952 Number of Variab les : 4
S.D. dependentvar : 20.9225 Degrees of Freed om : 17
R-squared :0.918745 F-statistic : 64.0723
Adjusted R-squared : 0.904405 Prob(F-statistic ) :1.79042e-009
Sum squared residual: ~ 746.96 Log likelihood : -67.2984
Sigma-square : 43.9389
Vari abl e Coefficient Std. Error t-Statistic Probability
CONSTANT  12.79761 2.842123 4.5 02833 0.0003138
JAN -0.5820471 0.1308637 -4.4 47736 0.0003531
DEC 0.53418 0.06947958 7.6 88302 0.0000006
MAR 0.9119744  0.1813468 5.0 28897 0.0001032

Pyovos = 12.80 — 0.5820 % JAN + 0.5342 » DEC + 0.9120 » MAR
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Appendix 2: Backward Stepwise Approach

Radar Study (Chapter 5)

Table A-2.1: Backward Stepwise Approach in Mulliai Linear Regression

ALTITUDE N_LAT DIST SOLARRAD  DIRDIFF10 MT2008 BOPE
ad;.
R? R° T prob. 't prob. T  prob. t prob. 't prob. T  prob. t  prob.
0.69 0.67| 6.99 0.000 4.42 0.000 2.71 0.008 -1.70 0.092 1.77 0.079 -1.43 0.155 0.40 0.687
0.68 0.67| 7.35 0.000 4.51 0.000 2.77 0.006 -1.66 0.099 1.76 0.081 -1.42 0.159
0.68 0.67| 10.3 0.000 4.66 0.000 3.00 0.003 -1.81 0.073 1.79 0.076
0.67 0.66| 10.52 0.000 4.45 0.000 3.57 0.000 -1.99 0.048
0.66 0.65| 13.550.000 4.18 0.000 3.64 0.000
0.63 0.62] 13.52 0.000 6.30 0.000
Table A-2.2: 2 Order Polynomial Multivariate Regression
ALTITUDE DIST DIST2 N_LAT
R? adj.R? T prob. t prob. 't prob. t  prob.
074  0.73 13.88 0.000 -4.52 0.000 599 0000 257 0011
072 0.72 13.38 0.000 -4.94 0.000 7.02 0.000
Mean Temperatures (Chapter 6, section6.2)
Below are tables showing the backward eliminatibmdependent variables for dataset A.
* denotes the best fitting (but still reasonable)del, final model selected is in bold.
MTO9
ALTITUDE Y ASP SLP CURV SOLRAD
adj.
R? R? t prob. t prob. t prob. t prob. t prob. T prob.
0.963 0.948 -10.24 0.000 -2.29 0.037 157 0.137 132 0206 -0.89 0.386 -0.15 0.881
0.961 0.952 -17.91 0.000 -2.62 0.017 152 0.146 1.03 0.320
*0.959 0.952| -19.88 0.000 -2.41 0.027 156 0.014
0.953 0.948 -19.60 0.000 -2.67 0.015
0.935 0.932 -17.03 0.000
y= 11.656 - 0.00563341 * [DEM-srtm] - 0.000003%8@ * [YO]
MTO8
ALTITUDE Y ASP SLP CURV SOLRAD
ad].
R? R? t prob. t prob. t prob. t prob. t prob. T prob.
0.978 0.969 -13.79 0.000 -3.06 0.008 1.65 0.120 1.79 0.094 -1.37 0.191 0.11 0.910
0.975 0.969 -23.42 0.000 -3.11 0.006 153 0.145 1.34 0.199
*0.973 0.968| -25.07 0.000 -2.76 0.013 1.64 0.118
0.969 0.966 -24.26 0.000 -3.37 0.003
0.951 0.948 -19.63 0.000
y= 12.197 -0.00588921 * [DEM-srtm] - 0.000003299 * [Y0]
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MTO7

ALTITUDE SLP CURV SOLRAD ASP
adj.

R? R% t prob. t prob. t prob. t prob. t prob. T prob.
0.976 0966 -13.59 0.000 -2.58 0.021 1.72 0.106 -1.34 0.201 0.73 0.474 0.65 0.524
0.975 0.967, -14.00 0.000 -3.08 0.007 1.69 0.111 -1.28 0.218 0.91 0.374
*0.974 0.968| -21.73 0.000 -2.99 0.008 1.97 0.065 -1.22 0.241
0.972 0.967| -22.54 0.000 -2.87 0.010 1.67 0.112
0.967 0.964 -23.650.000 -2.35 0.030
0.958 0.956 -21.27 0.000

y= 12.211 -0.00584728 * [dem-srtm] - 0.000002832Y0]
MTO6
ALTITUDE ASP Y SLP CURV SOLRAD
ad;.

R? R% t prob. t prob. t prob. t prob. t prob. T prob.
0.917 0884 -6.74 0.000 151 0.151 0.20 0.844 097 0.349 -0.88 0.395 -0.037 0.971
0.912 0.897] -13.54 0.000 157 0.134 042 0.677
*0.911 0.902| -13.84 0.000 154 0.139
0.900 0.895 -13.40 0.000
0.900 0.889 -13.03 0.000 -0.08 0.935

y= 10.671 - 0.00490266 * [dem-srtm] - 0.00000029R* [YO]
MTO5
ALTITUDE ASP Y SLP CURV SOLRAD
ad;.

R? R% t prob. t prob. t prob. t prob. t prob. T prob.
0.938 0914 -6.14 0.000 1.32 0.206 0.13 0.902 0.86 0.401 -0.67 0.510 -0.503 0.622
0.934 0924 -15.850.000 125 0.228 0.13 0.900
*0.934 0.928| -16.28 0.000 1.31 0.206
0.929 0.925 -16.13 0.000
0.929 0.921] -15.75 0.000 -0.32  0.756

y = 10.447 -0.00554196 * [dem-srtm] - 0.000000b439 * [YO]
MTO04
ALTITUDE ASP N_LAT CURV SLP SOLRAD
adj.

R? R% t prob. t prob. t prob. t prob. t prob. T prob.
0.966 0.952 -10.78 0.000 2.07 0.056 -0.55 0.593 -1.09 0.293 0.97 0.348 0.08 0.931
0.963 0.957| -21.43 0.000 2.14 0.046 -0.49 0.627
*0.962 0.958| -21.87 0.000 2.48 0.023
0.950 0.948 -19.51 0.000
0.954 0.949 -19.75 0.000 -1.19 0.248

y = 10.923 - 0.00583272 * [dem-srtm] - 0.000001723* [YO]
MTO3
ALTITUDE YO ASP SLP CURV SOLRAD
adj.

R? R% t prob. t prob. t prob. t prob. t prob. T prob.
0.957 0940 -0.90 0.000 -1.88 0.079 146 0.165 1.06 0.306 -0.81 0.427 0.25 0.806
*0.953 0.945| -18.88 0.000 -1.74 0.098 1.61 0.125
0.946 0940 -18.23 0.000 -2.29 0.033
0.931 0.928 -16.44 0.000

y= 11.372 -0.00538561 * [dem-srtm] - 0.000003352* [YO]
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MTO2

ALTITUDE YO ASP SLP CURV SOLRAD
adj.
R? R% t prob. t prob. t prob. t prob. t prob. T prob.
0.964 0949 -9.88 0.000 -1.62 0.126 158 0.136 1.22 0.240 -1.26 0.228 -0.52 0.609
*0.959 0.952| -20.29 0.000 -1.19 0.074 1.38 0.186
0.955 0.950 -20.02 0.000 -2.41 0.026
0.941 0.938 -17.86 0.000
y= 11.528 -0.0052164 * [DEM-srtm] - 0.00000315@3 [YO]
MTO1
ALTITUDE YO SLP ASP CURV SOLRAD
ad].
R? R% t prob. t prob. t prob. t prob. t prob. T prob.
0.968 0.956 -10.91 0.000 -1.49 0.158 1.77 0.097 1.67 0.116 -1.59 0.133 -0.045 0.656
0.968 0.958 -18.67 0.000 -1.68 0.113 1.76 0.098 165 0.118 -1.65 0.118
0.958 0.952 -18.31 0.000 -2.11 0.049 0.80 0.434
*0.957 0.953| -20.59 0.000 -1.97 0.063
0.948 0.946 -19.17 0.000
y= 10.618 - 0.00538076 * [DEM-srtm] - 0.00000236Q * [YO]
MTOO
ALTITUDE ASP YO SLP CURV SOLRAD
ad;.
R? Rg t prob. t prob. t prob. t prob. t prob. T prob.
0.973 0.962 -12.10 0.000 147 0.160 -1.21 0.245 1.25 0.231 -1.07 0.301 -0.076 0.941
*0.970 0.965| -23.79 0.000 1.48 0.156 -1.12 0.278
0.968 0.964 -23.64 0.000 1.93 0.068
0.961 0.960 -22.35 0.000
0.966 0.963| -23.37 0.000 -1.66 0.113
y= 11.968 - 0.00556648 * [DEM-srtm] - 0.0000013886 * [Y(]
MT99
ALTITUDE ASP YO SLP SOLRAD CURV
ad;.
R? R% t prob. t prob. t prob. t prob. t prob. T prob.
0.969 0.956 -10.90 0.000 182 0.089 -1.05 0.311 1.13 0.270 -0.70 0.492 -0.55 0.590
*0.965 0.960| -22.20 0.000 1.81 0.088 -1.04 0.313
0.963 0.959 -22.16 0.000 2.26 0.036
0.954 0.951] -20.26 0.000
0.959 0.955 -21.17 0.000 -1.64 0.116
y= 11.230 - 0.00559034 * [DEM-srtm] - 0.000002928 * [YO]
MT98
ALTITUDE YO ASP SLP CURV SOLRAD
ad;.
R? R% t prob. t prob. t prob. t prob. t prob. T prob.
0.961 0.946 -9.34 0.000 -1.32 0.208 156 0.140 1.35 0.195 -1.35 0.197 -0.72 0.480
*0.955 0.947| -19.28 0.000 -1.576 0.132 1.27 0.219
0.951 0.946 -19.16 0.000 -2.07 0.053
0.940 0.937] -17.67 0.000
y= 11.071 - 0.00550756 * [DEM-srtm] - 0.0000028%3 * [YO]
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Appendix 3: Accuracy

d = ALT-ALTDEM

Table A-3.1:Vertical Accuracy of the DEM

NR NAME AT | AT g | ALToew  d | NR NAME ALT | AT d | ALToem d
DEM_utm DEM_utn
1  Holesov 223.6 225 -1 226 p a1becpod 816 834 -18 818 -2
Snezkou
2 Kromeriz 233 232 1 233 42 Upice 413 407 6 407
3 Protivanov 675 678 -3 676 4L 43 Velichovky 2P9 129 8 293 6
4 ShoanedVin | sis| s o4 311 4 44 Vichiabi a2 485 |3 484
5  Stare Mesto 23 219 16 210 6 apeoney Oric. | 653 657 -4 657 -4
orach
6 Strani 383 381 2 383 p 46 Polom 718 726 |22 724
7  Straznice 176 170 6 170 [p  a7ROKytnicev 564 577  -13 577 ..
Orlic.horach 13
8  Vizovice 313 301 12 300 4  agRychnovnad 335 327 8 323 12
Kneznou
9 Brod nad Dyji 175 175 a 174 L 49 Ustinad Orlici 402 399 3 400 2
10 Bro 241 237 4 237 1 50 Zamberk 405 404 1 404
11 Bystiice nad 553| 549 4 549 4 52 Gajer 515 514 1 515
Pernstejnem
12 Bro 236 234 2 233 53 Hradec Kralove 278 2553 |2 254 24
13 Dukovany 400 397 3 396 B 54  Mokosin 2b5 255 0 8 25-3
14  Dyjakovice 201 197 4 197 A 55 Pardubice 225 227-2 227 -2
15 Kostelni 569 569 0 571 -4 56 Sez 539 520 9 523
Myslova
16 Kostelni 569 569 0 571 -2 57 Svratouch 787 730 7 728
Myslova
17 Kucharovice 334 337 -8 337 3 58 Holovousy 321 992 22 299 22
18  Lednice 176 173 3 173 B 59 Jicin 283 282 1 282
19 Nedvezi 722 718 4 718 # 60 Podebrady 189 192 -3 189 0
20 Sedlec 474 472 p 472 2 62 Zelezna Ruda 867 8692 - 866 1
21 Vatin 555 554 1 553 63 Klatovy 435 422 3 4141
22 Velke Mezirici 452 455 -3 455 -3 64 Plzen 360 535 5 358 2
o3 Cemav 739 739 0 737 4 65 Plzen 328 335 |7 335
Posumavi
24 Churanov 1117.8 1117 o 1117 |1 66 Stankov 362 3611 361 1
25 Churanov 1114 1111 | 1109 |9 e?fgznrf;a”“”o"y 527 529 -2 529 -2
26 Husinec 492 492 490 P 68 Kralovice 468 467 1 684 0
27 Kocelovice 515 512 3 512 B 69 Krasne Udol 642 496 -7 649 -7
28  Kocelovice 519 512 1 512 |7 70E"‘,j""zrr'f‘e”ske 691 690 1 687 4
Rozmital pod .
29 T e 524 524 0 524 @ 71 Primda 742 742 0 743
30 Temelin 503 501 2 499 W 72 Cheb 483 480 3 480
31 Vraz 433 434 -1 434 -] 73 Karlovy Vary 603 508 5 507 6
32 Borkovice 419 416 3 416 B 74 Sindelova 487 585 2 58 1
33 Bynov 475 475 @ 476 -1l 75 Belotin 306 304 2 3042
34 Ceske 394.06 393 1 393 76 Cervena 7h9 748 1 747
Budejovice
35 Cesky Krumlov 554 540 14 541 13 77  Javornik 289 284 5 285 4
3 Jindrichuv 524 524 0 524 d 78 Jesenik 465 465 0 466
Hradec
. Karlova -
37 Nadejkov 616 613 3 612 @ 790 o 780 788 -8 798 g
38 Tabor 459 462 -3 462 -8 80 Lucina 3p0 295 5 29%
39  VyssiBrod 559 557 2 557 P 81 Lysahora 13218 3141 8 1314 8
40 Labska bouda 131 1319 |4 1320 [-5 82 Mosnov 4250. 245 245
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ALT

NR NAME ALT | AT g | ALToew d | MR NAME ALT ALTpew d
DEM_utm DEM_utm
83 Opava 270 258 1P 259 11 133 Liberec 397.7 400 -2 399
84 Ostrava 238.6 236 ) 235 4 134 Straz pod Ralskem 310 308 2 308
85 Serak 1329 1328 0 1327 1135 Varnsdorf 365 372 -1 374
86 Svetla Hora 593 591 P 589 4
87 Alt')\ﬂgictjice 483 502 19 500 17
88 Dubicko 275 271 4 269 6
89 Jevicko 342 343 -1 344 2
90 Luka 510 508 2 503 4
91 Olomouc 210 207 3 207 B
92 Paseka 29( 288 P 288 |2
93 Sumperk 32§ 324 1 324 |4
94 Trebarov 375 386 1 387 12
95 Horni Becva 569 558 4 556 9
97 Maruska 664 639 25 645 19
98 Prerov 202.7 201 p 201 2
99  Valasske Mezirici 334 333 L 333 1
100 Vsetin 387 380 1 379 B
101 Lany 415 421 g 421 -6
102 Neumetely 322 318 f 318 4
103 Praha 237 234 P 218 14
104 Praha 282 280 p 281 1
105 Praha 191 204 13 204 13
106 Praha 302.04 302 0 302 |0
107 Pribram 555 553 p 557 {2
108 Praha 364 362 P 362 2
109 Brandys n. Laben 179 179 0 179 0
110 Desna 773 768 f 770 2
111 Semcice 234 231 B 231 3
112 Tuhan 160 161 -1 161 11
113 Kosetice 534 535 -1 534 |0
114 Nedrahovice 34§ 350 P 350 2
115 Novy Rychnov 624 615 ] 619 5
116 Ondrejov 485 494 -9 493 8
117 Pribyslav 530 525 b 525 b
118 Doksany 158 156 p 156 |2
119 Doksany 158 156 p 156 |2
120 Tusimice 3224 323 -1 323 11
121 Kopisty 240 241 -1 241 -1
122 Milesovka 833 816 17 792 41
123 Nova Ves v Hor. 725 730 b 730 5
124 Smolnice 345 343 p 342 3
125 Strojetice 372 370 P 370 2
126 Teplice 236 217 19 218 18
127 Usti nad Labem 37p 364 11 364 {11
128 Zatec 210 214 -4 213 B
129 Bedrichov 777 771 ¢ 771 6
130 Ceska Lipa 244 253 253 7
131 Doksy 284 287 -3 287 B
132 Hejnice 396 397 -1 396 0
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Table A-3.2: Validation of MT and P in 2008

MT P MT P
NR NAME o003 MTO8 d| 000 PO8 d| NR NAME o008 MTO8 d| 00 P08 d
2 | Kromeriz 108 103 05 454 480 47  47oknicev 7.8 81 03 798 832 -34
Orlic.horach
3 | Protivanov 7.8 77 01 605 722 -117 ychnov nad 9.4 96 02| 578 658 -8
neznou
4 ﬁgg‘j\/”ad Viai—1 95 100 -08 718 624 of 49 Ustinad Orlici 9.0 9.2-02| 684 630 53
5 | Stare Mesto 10.5 10.5 0J0 522 457 66 50 Zamberk 5 8 9.1 -0.6 643 684 -41
6 | Strani 9.2 97 -0 753 658 d5 52  Gajer 8.3 85021 630 610 20
7 | straznice 106 11.0 -0 546 545 1 B4 Mokosin 410. 101 03| 490 390 99
8 | Vizovice 9.7 99 -0.2 645 647 2 85 Pardubice 110. 10.3 -0.2 495 399 97
9 | Brod nad Dyji 108 111 -03 365 383 -19 B6 Sez 78 85 02| 618 590 2
10 | Brno 10.7 10.7 0.q 426 426 0 8 Holovousy 101 7 9 04 536 553 -17
11 | Bystrice nad 8.4 83 01| 519 600 -8l 59 Jicin 9.9 9.7 2 567 061-43
Pernstejnem
13 | Dukovany 9.6 9.6 0. 380 469 -89 60 Podebrady 210 104 -0.2 615 413 201
14 | Dyjakovice 107 111 -04 368 345 2 B2 ZeleRoda 7.2 6.9 03 1068 830 238
15 | Kostelni Myslova 8.4 85 -01 515 554 -39 64 eRlz 9.6 9.6 0.0 467 496 -29
16 | Kostelni Myslova 8.4 85 -01 510 554 -44 B5 eRlz 8.7 9.7 -1.0 453 509 -56
18 | Lednice 11.0 110 00 429 332 )7 B6 Stankov 9197 -06| 531 441 9
19 | Nedvezi 75 73 02 511 691 -180 pronstantinovy 7.8 85 -07| 518 620 ...
Lazne 102
20 | Sedlec 9.6 90 06 431 495 -p4 B8 Kralovice 8.9 8.9 00| 423 567 ,,,
21 | Vatin 8.1 82 -01 724 568 195 69 Krasne Udoli 37 77 04| 567 709 .0
23 | Cernav Posumav 6.6 7.8 -1,2 685 746 61 70 iaviske Lazne 6.7 7.4 -0.7 810 805 4
25 | Churanov 55 55 0.0 1017 1015 2 71 Primda 72 3 7 01| 691 677 14
26 | Husinec 8.3 9.2 -09 525 596 -T1 73 Karlovy Vary 7.6 7.9 -0.3 475 755 286
27 | Kocelovice 8.9 8.9 0. 516 529 -13 ¥4  Sindelova 6.9 7.9 -1.0 879 836 438
28 | Kocelovice 8.9 8.9 0. 518 529 -11 Y5 Belotin 79. 97 0.0 618 674  -5¢
29 | Rozmital pod 83 87 04| 584 569 1§ 76 Cervena 714 71 |00 78838 -53
Tremsinem
30 | Temelin 8.9 90 -01 502 525 43 77 Javornik 310. 9.6 07| 686 558 128
31| Vraz 9.0 93 -09 503 482 21 78 Jesenik 8.6 8600 834 793 41
32 | Borkovice 8.9 94 08§ 461 493 g2 pdarova 6.6 6.8 -0.2| 1141 980 16l
Studanka
33 | Bynov 8.7 93 -04 550 532 18 80 Lucina 9.7 9.7 00| 642 733 -91
35 | Cesky Krumlov 8.7 9.0 -0.3 523 666 -144 B3 Opava 9.7 9.8 -0.1 549 615 -67
36 | Jindrichuv Hraded, 8.8 88 oo 555 561 6 |84 amstr 10.1 9.9 02 677 624 92
37 | Nadejkov 8.2 81 01 493 546 -33 B85 Serak 35 6 3.-01| 1149 1232 -83
39 | VyssiBrod 74 90 -16 779 669 110 B6 SvetlaHo 7.2 79 07 685 784 -99
40 | Labska bouda 3.1 34 03 1485 1407 78 esto 8.9 8.4 05 784 752 32
Ibrechtice
41| Pec pod Snezkou 5.8 63 -05 1281 1049 P32 | 88bicku 9.6 99 03 489 566 -7B
42 | Upice 8.4 90 -0 630 678 48 89 Jevicko 88 6 9. -08| 586 540 44
43 | Velichovky 9.5 99 -04 539 527 13 90 Luka 88 78 01| 576 599 -23
44 | Vrchlabi 8.5 84 01 846 902 36 92 Paseka 10.0 9.9 01| 495 606 ;)
45 | Destne v Orlic. 7.0 76 06| 943 888 58 93 Sumperk 8.9 96 0.7 61954 -
Horach 135
46 | Polom 7.4 7.2 0.2 765 916 -182 D4 Trebarov 92 3 9 -01 582 563 19
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MT

NR NAME 2008 MTO08 d 2008 P08 d
97 | Maruska 8.1 7.9 0.2 776 776 1
98 | Prerov 10.1 10.5 -0.4 422 510 -88
99 | Valasske Mezirici 9.4 9.6 -0.p 698 789 -p1
100 | Vsetin 9.1 9.4 -0.3 715 765 -30
101 | Lany 8.9 9.1 -0.2 500 547 -48
102 | Neumetely 9.5 10.0 -0.b 485 494 -9
104 | Praha 10.1 10.5 -0.4 500 421 78
105 | Praha 11.9 11.2 0.7 425 395 P9
106 | Praha 10.4 105 -0 522 460 62
107 | Pribram 8.8 8.6 0.2 475 562 -87
109 | Brandys nad 105 107 -0.2| 580 387 193
Labem
110 | Desna 5.9 6.6 0.y 1155 1159 -5
112 | Tuhan 10.1 10.6 -0.5 495 412 B3
113 | Kosetice 8.7 8.5 0.2 505 540 -85
114 | Nedrahovice 8.6 9.7 -1 509 478 B1
115 | Novy Rychnov 7.8 8.1 -0.8 609 602 8
116 | Ondrejov 8.7 8.9 -0.2 549 569 -20
119 | Doksany 10.0 9.9 0.1 560 561 F1
120 | Tusimice 9.5 9.5 0. 420 446 -27
121 | Kopisty 9.4 10.0 -0.6 505 482 23
103 | Nova Vesv 6.8 70 02| 713 774 61
Horach
124 | Smolnice 9.3 9.4 -0.1 331 493 -162
125 | Strojetice 9.9 9.3 0.6 501 519 -19
126 | Teplice 10.2 10.1 0.1 552 444 108
127 | Usti nad Labem 9.5 9.1 ol4 595 555 41
128 | Zatec 9.2 10.2 -1.0 476 429 17
129 | Bedrichov 6.1 6.5 -0.4 1078 1117 -B9
130 | Ceska Lipa 9.5 9.7 -0p 628 564 64
131 | Doksy 9.2 96 -04 570 560 10
132 | Hejnice 9.3 8.7 0.6 956 873 2
134 | Straz pod 88 93 05 729 732 -
Ralskem
135 | Varnsdorf 8.9 8.9 0. 856 632 24
MBE= -22.2 °C MBE = -196 mm
MAE = 03 °C MAE = 67 mm
RMSE = 04 °C RMSE = 89 mm
MAX = 1.6 °C MAX = 280 mm
MED = 03 °C MED = 53 Mm
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Appendix 4: Mapfile

MAP
NAME MT # each object should have a name
PROJECTION
'init=epsg:32633' #WGS84 UTM Zone 33N
END
SIZE 450 300 # default size of a map in pixels
EXTENT 261955 5361927 805940 5665141
UNITS meters # map units
SHAPEPATH "/data/amuller/MT/" # path to data
IMAGECOLOR 255 255 255 # background color
IMAGETYPE png # type of the resulting image
TRANSPARENT ON #allow transparency
FONTSET '/data/amuller/fonts/font.list'

LEGEND
KEYSIZE 12 15
LABEL
TYPE TRUETYPE
FONT arial
SIZE 10
COLOROOO
ALIGN RIGHT

END

STATUS ON

END

REFERENCE

STATUS ON

IMAGE '/data/amuller/MT/RefMap.jpg’

SIZE 150 84

EXTENT 261955.53631154 5361927.43289661 805939.9
COLOR-1-1-1

OUTLINECOLOR 25500

END #REFERENCE

SYMBOL
NAME "square"
TYPE VECTOR
FILLED true
POINTS

### Beginning of Layers ###

LAYER

GROUP 'Relief'

NAME 'Shaded Relief'

DATA '/data/amuller/base/shaded_relief.jpg'
TYPE RASTER

STATUS OFF

PROJECTION

'init=epsg:32633'

END

END

LAYER

GROUP 'MT'
NAME mt2008
DATA MTO08_fm3.img

XIX
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TYPE RASTER
STATUS ON
PROJECTION
'init=epsg:32633'
END
METADATA
'OPACITY' '85'
END
CLASSITEM “[pixel]" # class using an EXPRESSIO
CLASS
EXPRESSION ([pixel] > 0 AND [pixel] <= 5)
STYLE
COLOR 038 115
END
END
CLASS
EXPRESSION ([pixel] > 5 AND [pixel] <= 6)
STYLE
COLOR 0 77 168
END
END
#.
#.
#.
# more classes

LAYER

GROUP 'Cities'

NAME '9 Largest Cities'
DATA '/data/amuller/base/cities_large'
TYPE POINT

STATUS OFF
PROJECTION
'init=epsg:32633'

END

LABELITEM 'NAZEV_ENG'
CLASS

NAME '9 Largest Cities'
STYLE

SYMBOL 'square'
COLOROOO

SIZE 5

END

LABEL

TYPE TRUETYPE

SIZE 12

FONT Arial

COLOROOO

POSITION UC
OFFSETO0O0

PRIORITY 10

# MAXSCALEDENOM 1100000
END #LABEL
END #CLASS

END

END

### END of ALL Layers ###
END # End of mapfile

XX

N using only [pixel].



